Article

Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells.

Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047 Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.74). 06/2003; 100(10):5828-33. DOI:10.1073/pnas.1037282100
Source: PubMed

ABSTRACT To understand the range of competence of embryonic stem (ES) cell-derived neural precursors, we have examined in vitro differentiation of mouse and primate ES cells into the dorsal- (neural crest) and ventralmost (floor plate) cells of the neural axis. Stromal cell-derived inducing activity (SDIA; accumulated on PA6 stromal cells) induces cocultured ES cells to differentiate into rostral CNS tissues containing both ventral and dorsal cells. Although early exposure of SDIA-treated ES cells to bone morphogenetic protein (BMP)4 suppresses neural differentiation and promotes epidermogenesis, late BMP4 exposure after the fourth day of coculture causes differentiation of neural crest cells and dorsalmost CNS cells, with autonomic system and sensory lineages induced preferentially by high and low BMP4 concentrations, respectively. In contrast, Sonic hedgehog (Shh) suppresses differentiation of neural crest lineages and promotes that of ventral CNS tissues such as motor neurons. Notably, high concentrations of Shh efficiently promote differentiation of HNF3beta(+) floor plate cells with axonal guidance activities. Thus, SDIA-treated ES cells generate naive precursors that have the competence of differentiating into the "full" dorsal-ventral range of neuroectodermal derivatives in response to patterning signals.

0 0
 · 
0 Bookmarks
 · 
67 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Our study investigates the differentiation of amniotic-derived mesenchymal stem cells (ADMSCs) into motor neuron (MN) precursor cells induced by a combination of extracellular matrix (ECM) and multi-cell factors. Membrane-like ECM was made by an enzymatic and chemical extraction method and exhibited good biological compatibility. Cells in the experimental group (EG) were treated with ECM and multi-cell factors in a multi-step induction process, while the control group (CG) was treated similarly, except without ECM. In the EG, after induction, the cells formed processes that connected with neighboring cells to form a net that had directionality. In these cells, neuron-specific enolase (NSE) and synaptophysin (SYN) expression levels increased and glial fibrillary acidic protein (GFAP) expression decreased. The SYN expression in the EG cells was higher compared with those in the CG. In the CG, NSE expression increased, while the expression of Nestin and SYN did not change. These were several changes in the levels of other genes: ADMSCs at passage 1 expressed Nanog, SOX2, octamer-binding transcription factor 4 (OCT4) and Nestin. In the EG, at the beginning of induction, the expression of Nanog decreased and that of SOX2 and Nestin increased. After 2 days, the cells expressed Nestin, OCT4 and SYNIII, and after 3 days, they expressed Olig2, OCT4, Nestin, SYNII and Islet1 (ISL1). Finally, at day 6, the cells expressed Nestin, SYNI, SYNIII, ISL-1, homeobox 9 (Hb9) and oligodendrocyte lineage transcription factor 2 (Olig2). In the CG, the cells never expressed SYNI, SYNII or Hb9. Our studies therefore demonstrate that the extracted ECM was capable of promoting the maturation of synapses. Human ADMSCs are composed of multiple cell subsets, including neural progenitor cells. The multi-step induction method used in this study causes human ADMSCs to differentiate into MN precursor cells.
    Tissue and Cell 06/2013; · 1.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The behavior of stem cells, when they work collectively, can be much more sophisticated than one might expect from their individual programming. This Perspective covers recent discoveries about the dynamic patterning and structural self-formation of complex organ buds in 3D stem cell culture, including the generation of various neuroectodermal and endodermal tissues. For some tissues, epithelial-mesenchymal interactions can also be manipulated in coculture to guide organogenesis. This new area of stem cell research-the spatiotemporal control of dynamic cellular interactions-will open a new avenue for next-generation regenerative medicine.
    Cell stem cell 05/2013; 12(5):520-30. · 23.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The value of human disease models which are based on induced pluripotent stem cells (iPSCs) depends on the capacity to generate specifically those cell types affected by the pathology. We describe a new iPSC-based model of Friedreich Ataxia (FRDA), an autosomal recessive neurodegenerative disorder with an intronic GAA repeat expansion in the frataxin gene. As the peripheral sensory neurons are particularly susceptible to neurodegeneration in FRDA, we applied a development-based differentiation protocol to generate specifically these cells. FRDA and control iPSC lines were efficiently differentiated toward neural crest progenitors and peripheral sensory neurons. The progress of the cell lines through discrete steps of in vitro differentiation was closely monitored by expression levels of key markers for peripheral neural development. Since it had been suggested that FRDA pathology might start early during ontogenesis, we investigated frataxin expression in our development-related model. A pronounced frataxin deficit was found in FRDA iPSCs and neural crest cells compared to controls. While we identified an up-regulation of frataxin expression during sensory specification for control cells, this increase was not observed for FRDA peripheral sensory neurons. This early failure, aggravating frataxin deficiency in a specifically vulnerable human cell population, indicates a developmental component in FRDA.
    Stem cells and development 07/2013; · 4.15 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
May 29, 2013