Article

Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells.

Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047 Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2003; 100(10):5828-33. DOI: 10.1073/pnas.1037282100
Source: PubMed

ABSTRACT To understand the range of competence of embryonic stem (ES) cell-derived neural precursors, we have examined in vitro differentiation of mouse and primate ES cells into the dorsal- (neural crest) and ventralmost (floor plate) cells of the neural axis. Stromal cell-derived inducing activity (SDIA; accumulated on PA6 stromal cells) induces cocultured ES cells to differentiate into rostral CNS tissues containing both ventral and dorsal cells. Although early exposure of SDIA-treated ES cells to bone morphogenetic protein (BMP)4 suppresses neural differentiation and promotes epidermogenesis, late BMP4 exposure after the fourth day of coculture causes differentiation of neural crest cells and dorsalmost CNS cells, with autonomic system and sensory lineages induced preferentially by high and low BMP4 concentrations, respectively. In contrast, Sonic hedgehog (Shh) suppresses differentiation of neural crest lineages and promotes that of ventral CNS tissues such as motor neurons. Notably, high concentrations of Shh efficiently promote differentiation of HNF3beta(+) floor plate cells with axonal guidance activities. Thus, SDIA-treated ES cells generate naive precursors that have the competence of differentiating into the "full" dorsal-ventral range of neuroectodermal derivatives in response to patterning signals.

Full-text

Available from: Akiko Arakawa, May 07, 2015
0 Followers
 · 
123 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Outcomes following peripheral nerve injury remain frustratingly poor. The reasons for this are multifactorial, although maintaining a growth permissive environment in the distal nerve stump following repair is arguably the most important. The optimal environment for axonal regeneration relies on the synthesis and release of many biochemical mediators that are temporally and spatially regulated with a high level of incompletely understood complexity. The Schwann cell (SC) has emerged as a key player in this process. Prolonged periods of distal nerve stump denervation, characteristic of large gaps and proximal injuries, have been associated with a reduction in SC number and ability to support regenerating axons. Cell based therapy offers a potential therapy for the improvement of outcomes following peripheral nerve reconstruction. Stem cells have the potential to increase the number of SCs and prolong their ability to support regeneration. They may also have the ability to rescue and replenish populations of chromatolytic and apoptotic neurons following axotomy. Finally, they can be used in non-physiologic ways to preserve injured tissues such as denervated muscle while neuronal ingrowth has not yet occurred. Aside from stem cell type, careful consideration must be given to differentiation status, how stem cells are supported following transplantation and how they will be delivered to the site of injury. It is the aim of this article to review current opinions on the strategies of stem cell based therapy for the augmentation of peripheral nerve regeneration.
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are three controversial and undetermined models of neurogenesis and gliogenesis from neuroepithelial cells in the early neural tube; the first in which neurons and glia were proposed to originate from a single homogenous population, the second from two separate pools of committed glial and neuronal progenitors, or, lastly, from transit radial glial (RG). Issues concerning embryonic neural lineage development in primates are not well understood due to restrictions imposed by ethics and material sources. In this study, early neural lineage development was investigated in vitro with rhesus monkey embryonic stem cells (rESC) by means of immunofluorescence with lineage specific markers. It was revealed that neural differentiation likely progresses in a sequential lineage restriction pathway from neuroepithelial stem/progenitor cells to neurons and glia via RG and intermediate precursors: neuronal precursors and glial progenitors. In conclusion, our results suggest that the early neural lineage development of rESC in vitro supported the model in which neuroepithelial cells develop into RG capable of generating both neurons and glia. This work should facilitate understanding of the mechanism of development of the nervous system in primates.
    09/2013; 4(3):378-384. DOI:10.2478/s13380-013-0135-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs). These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase their knowledge of neural crest development. In this experimental study, we cultured human embryonic stem cells (hESCs) on stromal stem cells from human exfoliated deciduous teeth (SHED) for a two-week period. We used different approaches to characterize these differentiated cells as neural precursor cells (NPCs) and NCCs. In the first co-culture week, hESCs appeared as crater-like structures with marginal rosettes. NPCs derived from these structures expressed the early neural crest marker p75 in addition to numerous other genes associated with neural crest induction such as SNAIL, SLUG, PTX3 and SOX9. Flow cytometry analysis showed 70% of the cells were AP2/P75 positive. Moreover, the cells were able to self-renew, sustain multipotent differentiation potential, and readily form neurospheres in suspension culture. SHED, as an adult stem cell with a neural crest origin, has stromal-derived inducing activity (SDIA) and can be used as an NCC inducer from hESCs. These cells provide an invaluable resource to study neural crest differentiation in both normal and disordered human neural crest development.
    Cell Journal 01/2015; 17(1):37-48. · 0.46 Impact Factor