Wavelet based automatic seizure detection in intracerebral electroencephalogram.

Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Room 767, 3801 University Street, Quebec, Canada H3A 2B4.
Clinical Neurophysiology (Impact Factor: 3.14). 06/2003; 114(5):898-908. DOI: 10.1016/S1388-2457(03)00035-X
Source: PubMed

ABSTRACT Automatic seizure detection is often used during long-term monitoring, and is particularly important during intracerebral investigations. Existing methods make many false detections, particularly in intracerebral electroencephalogram (EEG) because of frequent large amplitude rhythmic activity bursts that are non-epileptiform.
To develop a seizure detection method for intracerebral monitoring that is as sensitive as existing methods but has fewer false detections.
To capture the rhythmic nature of seizure discharges, we developed a wavelet-based method, examining how different frequency ranges fluctuate compared to the background. In particular, the system remembers rhythmic bursts occurring commonly in the background to avoid detecting them as seizures.
The method was evaluated on test data from 11 patients, including 229 h and 66 seizures, and its performance compared to the method of Gotman (Electroencephalogr clin Neurophysiol 76 (1990) 317). Detection sensitivity was unchanged at close to 90%, but false detections were reduced from 2.4 to 0.3/h.
Perfect sensitivity is unlikely because the morphology of seizure discharges is so variable. Nevertheless, the 87% sensitivity obtained in the combined training and testing data is quite high. We reduced the average false alarm rate to one per 3 h of recording, or 6 per 24-h period. Given how rapidly one can decide visually that a detection is erroneous, false detections should not cause any burden to the reviewer.
In intracerebral EEG it is possible to detect seizures automatically with high sensitivity and high specificity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study proposes a method of automatic detection of epileptic seizure event and onset using wavelet based features and certain statistical features without wavelet decomposition. Normal and epileptic EEG signals were classified using linear classifier. For seizure event detection, Bonn University EEG database has been used. Three types of EEG signals (EEG signal recorded from healthy volunteer with eye open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. Important features such as energy, entropy, standard deviation, maximum, minimum, and mean at different subbands were computed and classification was done using linear classifier. The performance of classifier was determined in terms of specificity, sensitivity, and accuracy. The overall accuracy was 84.2%. In the case of seizure onset detection, the database used is CHB-MIT scalp EEG database. Along with wavelet based features, interquartile range (IQR) and mean absolute deviation (MAD) without wavelet decomposition were extracted. Latency was used to study the performance of seizure onset detection. Classifier gave a sensitivity of 98.5% with an average latency of 1.76 seconds.
    BioMed research international. 01/2014; 2014:450573.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The electroencephalogram (EEG) signals are commonly used signals for detection of epileptic seizures. In this paper, we present a new method for classification of two classes of EEG signals namely focal and non-focal EEG signals. The proposed method uses the sample entropies and variances of the intrinsic mode functions (IMFs) obtained by empirical mode decomposition (EMD) of EEG signals. The average sample entropy (ASE) of IMFs and average variance of instantaneous frequencies (AVIF) of IMFs for separate EEG signals have been used as features for classification of focal and non-focal EEG signals. These two parameters have been used as an input feature set to the least square support vector machine (LS-SVM) classifier. The experimental results for various IMFs of focal and non-focal EEG signals have been included to show the effectiveness of the proposed method. The proposed method has provided promising classification accuracy for classification of focal and non-focal seizure EEG signals when radial basis function (RBF) has been employed as a kernel with LS-SVM classifier.
    IEEE International Conference on Medical Biometrics, Shenzhen, China; 05/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classification of electroencephalography (EEG) is the most useful diagnostic and monitoring procedure for epilepsy study. A reliable algorithm that can be easily implemented is the key to this procedure. In this paper a novel signal feature extraction method based on dynamic principal component analysis and nonoverlapping moving window is proposed. Along with this new technique, two detection methods based on extracted sparse features are applied to deal with signal classification. The obtained results demonstrated that our proposed methodologies are able to differentiate EEGs from controls and interictal for epilepsy diagnosis and to separate EEGs from interictal and ictal for seizure detection. Our approach yields high classification accuracy for both single-channel short-term EEGs and multichannel long-term EEGs. The classification performance of the method is also compared with other state-of-the-art techniques on the same datasets and the effect of signal variability on the presented methods is also studied.
    The Scientific World Journal 01/2014; 2014:419308. · 1.73 Impact Factor