Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice.

Department of Laboratory Medicine and Pathology, University of Minnesota, Mayo Mail Code 206, Minneapolis, MN 55455, USA.
Neuron (Impact Factor: 15.77). 06/2003; 38(3):375-87. DOI: 10.1016/S0896-6273(03)00258-7
Source: PubMed

ABSTRACT Polyglutamine-induced neurodegeneration in transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene is modulated by subcellular distribution of ataxin-1 and by components of the protein folding/degradation machinery. Since phosphorylation is a prominent mechanism by which these processes are regulated, we examined phosphorylation of ataxin-1 and found that serine 776 (S776) was phosphorylated. Residue 776 appeared to affect cellular deposition of ataxin-1[82Q] in that ataxin-1[82Q]-A776 failed to form nuclear inclusions in tissue culture cells. The importance of S776 for polyglutamine-induced pathogenesis was examined by generating ataxin-1[82Q]-A776 transgenic mice. These mice expressed ataxin-1[82Q]-A776 within Purkinje cell nuclei, yet the ability of ataxin-1[82Q]-A776 to induce disease was substantially reduced. These studies demonstrate that polyglutamine tract expansion and localization of ataxin-1 to the nucleus of Purkinje cells are not sufficient to induce disease. We suggest that S776 of ataxin-1 also has a critical role in SCA1 pathogenesis.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellar ataxias are progressive neurodegenerative disorders characterized by atrophy of the cerebellum leading to motor dysfunction, balance problems, and limb and gait ataxia. These include amongst others the dominantly inherited spinocerebellar ataxias, recessive cerebellar ataxias such as Friedreich's ataxia, and X-linked cerebellar ataxias. Since all cerebellar ataxias display considerable overlap in their disease phenotypes, common pathological pathways must underlie the selective cerebellar neurodegeneration. Therefore, it is important to identify the molecular mechanisms and routes to neurodegeneration that cause cerebellar ataxia. In this review, we discuss the use of functional genomic approaches including whole-exome sequencing, genome-wide gene expression profiling, miRNA profiling, epigenetic profiling, and genetic modifier screens to reveal the underlying pathogenesis of various cerebellar ataxias. These approaches have resulted in the identification of many disease genes, modifier genes, and biomarkers correlating with specific stages of the disease. This article is part of a Special Issue entitled: From Genome to Function.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling pathways and cellular processes that regulate neural development are used post-developmentally for proper function and maintenance of the nervous system. Genes that have been studied in the context of the development of Drosophila peripheral nervous system (PNS) and neuromuscular junction (NMJ) have been identified as players in the pathogenesis of human neurodegenerative diseases, including spinocerebellar ataxia, amyotrophic lateral sclerosis, and spinal muscular atrophy. Hence, by unraveling the molecular mechanisms that underlie proneural induction, cell fate determination, axonal targeting, dendritic branching, and synapse formation in Drosophila, novel features related to these disorders have been revealed. In this review, we summarize and discuss how studies of Drosophila PNS and NMJ development have provided guidance in experimental approaches for these diseases.
    Current opinion in neurobiology 04/2014; 27C:158-164. · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding how proteins protect themselves from aberrant aggregation is of primary interest for understanding basic biology, protein biochemistry, and human disease. We discuss the paradigmatic example of ataxin-1 (Atx1), the protein responsible for neurodegenerative spinocerebellar ataxia type 1 (SCA1). This disease is part of the increasing family of pathologies caused by protein aggregation and misfolding. We discuss the importance of protein-protein interactions not only in the nonpathological function of Atx1 but also in protecting the protein from aggregation and misfolding. The lessons learned from Atx1 may lead to a more general understanding of the cell's protective strategies against aggregation. The obtained knowledge may suggest a new perspective for designing specific therapeutic strategies for the cure of misfolding diseases.
    Trends in Neurosciences 03/2014; · 13.58 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014