Article

Hypoglycemic agent YM440 suppresses hepatic glucose output via gluconeogenesis by reducing glucose-6-phosphatase activity in obese Zucker rats.

Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co, Ltd, Ibaraki, Tsukuba, Japan
European journal of pharmacology (Impact Factor: 2.59). 06/2003; 468(2):151-8. DOI: 10.1016/S0014-2999(03)01670-4
Source: PubMed

ABSTRACT Using a glucose clamp, we had shown that YM440, (Z)-1,4-bis[4-[(3,5-dioxo-1,2,4-oxadiazolidin-2-yl)methyl]phenoxy]but-2-ene, reduced the increased hepatic glucose output in obese Zucker rats. We further examined effects of YM440 on 14C-incorporation from [14C]bicarbonate into blood glucose via gluconeogenesis, and on gluconeogenic enzymatic activities. Fed obese Zucker rats showed a 4-fold increase of 14C-incorporation into blood glucose compared to that in lean rats. Glucose-6-phosphatase and fructose-1,6-bisphosphatase activities in obese rats were increased 1.4-fold and 1.6-fold compared with lean rats. YM440 (300 mg/kg for 2 weeks) decreased 14C-incorporation into blood glucose by 29% in obese rats. Glucose-6-phosphatase but not fructose-1,6-bisphosphatase activity was reduced by YM440 and closely correlated with 14C-incorporation into blood glucose, indicating a key role for glucose-6-phosphatase in hepatic glucose output. These results suggest that the increased gluconeogenesis in obese rats is mainly due to the increased activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase and that YM440 suppresses hepatic glucose output by reducing glucose-6-phosphatase activity.

0 Bookmarks
 · 
37 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Indole glucosinolates, present in cruciferous vegetables have been investigated for their putative pharmacological properties. The current study was designed to analyse whether the treatment of the indole glucosinolates-indole-3-carbinol (I3C) and its metabolite 3,3'-diindolylmethane (DIM) could alter the carbohydrate metabolism in high-fat diet (HFD)-induced C57BL/6J mice. The plasma glucose, insulin, haemoglobin (Hb), glycosylated haemoglobin (HbA1c), glycogen and the activities of glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) were analysed in liver and kidney of the treated and HFD mice. Histopathological examination of liver and pancreases were also carried out. The HFD mice show increased glucose, insulin and HbA1c and decreased Hb and glycogen levels. The elevated activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase and subsequent decline in the activity of glucokinase and glucose-6-phosphate dehydrogenase were seen in HFD mice. Among treatment groups, the mice administered with I3C and DIM, DIM shows decreased glucose, insulin and HbA1c and increased Hb and glycogen content in liver when compared to I3C, which was comparable with the standard drug metformin. The similar result was also obtained in case of carbohydrate metabolism enzymes; treatment with DIM positively regulates carbohydrate metabolic enzymes by inducing the activity of glucokinase and glucose-6-phosphate dehydrogenase and suppressing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase when compared to I3C, which were also supported by our histopathological observations.
    Molecular and Cellular Biochemistry 09/2013; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thiazolidinediones constitute a family of antidiabetic drugs, and rosiglitasone (RSG) has an extensive usage in treating the complications of type 2 diabetes mellitus. Carvacrol (CVL), a monoterpenic phenol that occurs in many essential oils of the family Labiatae including Origanum, Satureja, Thymbra, Thymus, and Corydothymus species, possess a wide variety of pharmacological properties including antioxidant potential. We hypothesized that carvacrol in combination with RSG would prove beneficial to ameliorate the dysregulated carbohydrate metabolism in high-fat diet (HFD)-induced type 2 diabetic C57BL/6J mice. Mice were divided into six groups and fed HFD, for 10 weeks. CVL (20 mg/kg BW) and RSG (4 mg/kg BW) were administered post-orally, daily for 35 days. HFD mice showed an elevation in plasma glucose, insulin, glycosylated hemoglobin and a decrease in hemoglobin. The activities of carbohydrate metabolic enzymes such as glucose-6-phosphatase and fructose-1,6-bisphosphatase increased whereas glucokinase and glucose-6-phosphate dehydrogenase activities decreased in the liver of HFD mice. The activities of hepatic marker enzymes such as aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transpeptidase increased in HFD mice. Combination of CVL and RSG prevented the above changes toward normalcy. Histopathological analysis of H&E stained pancreas was also in agreement with the biochemical findings. These major findings provide evidence that combination of CVL with RSG has better antidiabetic properties.
    Molecular and Cellular Biochemistry 09/2013; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular mechanisms for the potential antihyperglycemic effect of equol remain to be elucidated. In this study, we investigated the in vitro effect of equol on glucose uptake, AMP-activated protein kinase (AMPK) phosphorylation, and glucose transporter 4 (GLUT4) translocation to plasma membrane in L6 myocytes, and its in vivo antihyperglycemic effect in obese-diabetic model ob/ob mice. Equol was found to promote glucose uptake, AMPK phosphorylation, and GLUT4 translocation detected by Western blotting analyses in L6 myotubes under a condition of insulin absence. Equol (0.05% in diet) suppressed the rise in serum glucose, cholesterol, triglyceride, and lipid peroxide concentrations and the hepatic triglyceride level as compared with those in the control group. Moreover, equol treatment suppressed the rises in fasting blood glucose level and improved the impaired glucose tolerance in ob/ob mice. Furthermore, equol treatment was demonstrated to improve expression of hepatic gluconeogenesis- and lipogenesis-related genes in terms of glucose and lipid metabolism. The hypoglycemic effect of equol is related to increased GLUT4 translocation to the plasma membrane via AMPK activation. In addition, equol suppresses the fasting blood glucose level and gene expression of hepatic enzymes related to glucose metabolism. These results strongly suggest that equol has antidiabetic potential.
    Molecular Nutrition & Food Research 09/2013; · 4.31 Impact Factor