Article

Architecture of initiation-competent 12-subunit RNA polymerase II.

Institute of Biochemistry and Gene Center, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2003; 100(12):6964-8. DOI: 10.1073/pnas.1030608100
Source: PubMed

ABSTRACT RNA polymerase (Pol) II consists of a 10-polypeptide catalytic core and the two-subunit Rpb4/7 complex that is required for transcription initiation. Previous structures of the Pol II core revealed a "clamp," which binds the DNA template strand via three "switch regions," and a flexible "linker" to the C-terminal repeat domain (CTD). Here we derived a model of the complete Pol II by fitting structures of the core and Rpb4/7 to a 4.2-A crystallographic electron density map. Rpb4/7 protrudes from the polymerase "upstream face," on which initiation factors assemble for promoter DNA loading. Rpb7 forms a wedge between the clamp and the linker, restricting the clamp to a closed position. The wedge allosterically prevents entry of the promoter DNA duplex into the active center cleft and induces in two switch regions a conformation poised for template-strand binding. Interaction of Rpb4/7 with the linker explains Rpb4-mediated recruitment of the CTD phosphatase to the CTD during Pol II recycling. The core-Rpb7 interaction and some functions of Rpb4/7 are apparently conserved in all eukaryotic and archaeal RNA polymerases but not in the bacterial enzyme.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spt5, a transcription elongation factor, and Rpb4, a subunit of RNA polymerase II (RNAP II) that forms a subcomplex with Rpb7, play important roles in transcription elongation and repression of transcription coupled DNA repair (TCR) in eukaryotic cells. How Spt5 physically interacts with RNAP II, and if and/or how Spt5 and Rpb4/7 coordinate to achieve the distinctive functions have been enigmatic. By site-specific incorporation of the unnatural amino acid p-benzoyl-L-phenylalanine, a photoreactive cross-linker, we mapped interactions between Spt5 and RNAP II in Saccharomyces cerevisiae. Through its KOW4-5 domains, Spt5 extensively interacts with Rpb4/7. Spt5 also interacts with Rpb1 and Rpb2, two largest subunits of RNAP II, at the clamp, protrusion and wall domains. These interactions may lock the clamp to the closed conformation and enclose the DNA being transcribed in the central cleft of RNAP II. Deletion of Spt5 KOW4-5 domains decreases transcription elongation and derepresses TCR. Our findings suggest that Spt5 is a key coordinator for holding the RNAP II complex in a closed conformation that is highly competent for transcription elongation but repressive to TCR.
    Nucleic Acids Research 05/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The archaeal transcription apparatus is closely related to the eukaryotic RNA polymerase II (Pol II) system. Archaeal RNA polymerase (RNAP) and Pol II evolved from a common ancestral structure and the euryarchaeal RNAP is the simplest member of the extant archaeal-eukaryotic RNAP family. Here we report the first crystal structure of euryarchaeal RNAP from Thermococcus kodakarensis (Tko). This structure reveals that the clamp domain is able to swing away from the main body of RNAP in the presence of the Rpo4/Rpo7 stalk by coordinated movements of these domains. More detailed structure-function analysis of yeast Pol II and Tko RNAP identifies structural additions to Pol II that correspond to the binding sites of Pol II-specific general transcription factors including TFIIF, TFIIH and Mediator. Such comparisons provide a framework for dissecting interactions between RNAP and these factors during formation of the pre-initiation complex.
    Nature Communications 10/2014; 5:5132. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAPII) participate in a variety of processes from transcription, DNA repair, mRNA export and decay, to translation regulation and stress response. However, their mechanism(s) of action remains unclear. Here, we show that the Rpb4/7 heterodimer in Saccharomyces cerevisiae plays a key role in controlling phosphorylation of the carboxy terminal domain (CTD) of the Rpb1 subunit of RNAPII. Proper phosphorylation of the CTD is critical for the synthesis and processing of RNAPII transcripts. Deletion of RPB4, and mutations that disrupt the integrity of Rpb4/7 or its recruitment to the RNAPII complex, increased phosphorylation of Ser2, Ser5, Ser7 and Thr4 within the CTD. RPB4 interacted genetically with genes encoding CTD phosphatases (SSU72, FCP1), CTD kinases (KIN28, CTK1, SRB10) and a prolyl isomerase that targets the CTD (ESS1). We show that Rpb4 is important for Ssu72 and Fcp1 phosphatases association, recruitment and/or accessibility to the CTD, and that this correlates strongly with Ser5P and Ser2P levels, respectively. Our data also suggest that Fcp1 is the Thr4P phosphatase in yeast. Based on these and other results, we suggest a model in which Rpb4/7 helps recruit and potentially stimulate the activity of CTD-modifying enzymes, a role that is central to RNAPII function. The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 11/2014; · 8.81 Impact Factor

Preview

Download
0 Downloads
Available from