Article

Long-lasting enhancement of rapid eye movement sleep and pontogeniculooccipital waves by vasoactive intestinal peptide microinjection into the amygdala temporal lobe.

Division de Investigaciones en Neurociencias, Departamento de Cronobiología, Instituto Nacional de Psiquiatria Ramón de la Fuente, Tlalpan, Mexico, D.F.
Sleep (Impact Factor: 5.1). 06/2003; 26(3):259-64.
Source: PubMed

ABSTRACT The effect of a vasoactive intestinal peptide (VIP) microinjection into the amygdaloid central (CN) and basal nuclei (BN) on sleep organization and on the number and pattern of occurrence of pontogeniculooccipital (PGO) waves was analyzed.
One group of 8 cats was studied in baseline conditions and after the microinjection of two doses of VIP applied into the CN and BN.
Sleep research laboratory. PARTCIPANTS AND INTERVENTIONS: Eight cats were prepared with sleep-recording electrodes and with guide tubes in both amygdalae for saline and VIP microinjections. Neuropeptide doses of 0.10 microg/1 microl (30 microM) and 0.33 microg/1 microl (99.24 microM) were employed.
Once the microinjection was applied, 23-hour polygraphic sleep recordings were performed for 5 consecutive days. Concomitantly the PGO waves were tape-recorded on each day and computationally analyzed. Results show that the 0.10 microg/1 microl microinjection produced no change. Unilateral VIP 0.33 microg/1 microl injection into the CN provoked a significant and lasting increase in the percentage of slow-wave sleep with PGO waves. Bilateral application of VIP increased the percentage of slow-wave sleep with PGO waves and rapid eye movement sleep for 5 days. Bilateral microinjection of the neuropeptide into the BN only enhanced the percentage of slow wave sleep with PGO waves. For both amygdaloid nuclei, we observed that VIP increased the number and modified the PGO wave pattern of occurrence during slow-wave sleep with PGO waves and during rapid eye movement sleep.
The VIP microinjection into both the CN and BN induces increased amounts of rapid eye movement sleep, PGO waves, and slow-wave sleep with PGO waves, having a more robust effect on all of these three variables when applied into the CN.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vasoactive intestinal peptide (VIP) is a regulator of rodent embryogenesis during the period of neural tube closure. VIP enhanced growth in whole cultured mouse embryos; treatment with a VIP antagonist during embryogenesis inhibited growth and development. VIP antagonist treatment during embryogenesis also had permanent effects on adult brain chemistry and impaired social recognition behavior in adult male mice. The neurological deficits of autism appear to be initiated during neural tube closure and social behavior deficits are among the key characteristics of this disorder that is more common in males and is frequently accompanied by mental retardation. The current study examined the blockage of VIP during embryogenesis as a model for the behavioral deficits of autism. Treatment of pregnant mice with a VIP antagonist during embryonic days 8 through 10 had no apparent effect on the general health or sensory or motor capabilities of adult offspring. However, male offspring exhibited reduced sociability in the social approach task and deficits in cognitive function, as assessed through cued and contextual fear conditioning. Female offspring did not show these deficiencies. These results suggest that this paradigm has usefulness as a mouse model for aspects of autism as it selectively impairs male offspring who exhibit the reduced social behavior and cognitive dysfunction seen in autism. Furthermore, the study indicates that the foundations of some aspects of social behavior are laid down early in mouse embryogenesis, are regulated in a sex specific manner and that interference with embryonic regulators such as VIP can have permanent effects on adult social behavior.
    Experimental Neurology 08/2007; 206(1):101-13. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Narcolepsy is a neurological disorder characterized, in its classical form, by excessive daytime sleepiness (EDS) with irresistible episodes of sleep, cataplexy, disrupted nocturnal sleep, hypnagogic/hypnopompic hallucinations and sleep paralysis. It is often under-diagnosed, however, if it is suitably diagnosed, symptoms can be well treated by means of targeted drugs, such as modafinil to treat EDS, sodium oxybate for cataplexy, as well as EDS and disrupted nocturnal sleep, and tricyclic and newer antidepressants for cataplexy. Hallucinations and sleep paralysis can be treated with the same drugs used for cataplexy. Amphetamines and amphetamine-like stimulants are used less nowadays. Behavioral measures are also important and useful. The discovery of hypocretin deficiency in narcoleptic patients opens new perspectives for the development of newer therapeutic approaches for both EDS and cataplexy. Therapy for narcolepsy is chronic, hence symptomatic. However, the correct use of available drugs enables patients to gain a better quality of life, keeping the symptoms under control, which, mainly from a social point of view, are heavily disabling.
    Expert Review of Neurotherapeutics 07/2009; 9(6):897-910. · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vasoactive intestinal peptide (VIP) regulates growth and development during the early postimplantation period of mouse embryogenesis. Blockage of VIP with a VIP antagonist during this period results in growth restriction, microcephaly, and developmental delays. Similar treatment of neonatal rodents also causes developmental delays and impaired diurnal rhythms, and the adult brains of these animals exhibit neuronal dystrophy and increased VIP binding. These data suggest that blockage of VIP during the development of the nervous system can result in permanent changes to the brain. In the current study, pregnant mice were treated with a VIP antagonist during embryonic days 8 through 10. The adult male offspring were examined in tests of novelty, paired activity, and social recognition. Brain tissue was examined for several measures of chemistry and gene expression of VIP and related compounds. Glial cells from the cortex of treated newborn mice were plated with neurons and examined for VIP binding and their ability to enhance neuronal survival. Treated adult male mice exhibited increased anxiety-like behavior and deficits in social behavior. Brain tissue exhibited regionally specific changes in VIP chemistry and a trend toward increased gene expression of VIP and related compounds that reached statistical significance in the VIP receptor, VPAC-1, in the female cortex. When compared to control astrocytes, astrocytes from treated cerebral cortex produced further increases in neuronal survival with excess synaptic connections and reduced VIP binding. In conclusion, impaired VIP activity during mouse embryogenesis resulted in permanent changes to both adult brain chemistry/cell biology and behavior with aspects of autism-like social deficits.
    Journal of Molecular Neuroscience 02/2007; 31(3):183-200. · 2.89 Impact Factor

Full-text

View
34 Downloads
Available from
Jun 6, 2014