Article

Copper resistance in Desulfovibrio strain R2.

Department of Agriculture and Environmental Science, Tomsk State University, Prospect Lenina 36, Tomsk 634050, Russia.
Antonie van Leeuwenhoek (Impact Factor: 2.14). 02/2003; 83(1):99-106. DOI: 10.1023/A:1022947302637
Source: PubMed

ABSTRACT A sulfate-reducing bacterium, designated as strain R2, was isolated from wastewater of a ball-bearing manufacturing facility in Tomsk, Western Siberia. This isolate was resistant up to 800 mg Cu/l in the growth medium. By comparison, Cu-resistance of reference cultures of sulfate-reducing bacteria ranged from 50 to 75 mg Cu/l. Growth experiments with strain R2 showed that Cu was an essential trace element and, on one hand, enhanced growth at concentrations up to 10 mg/l but, on the other hand, the growth rate decreased and lag-period extended at copper concentrations of >50 mg/l. Phenotypic characteristics and a 1078 bp nucleotide sequence of the 16S rDNA placed strain R2 within the genus Desulfovibrio. Desulfovibrio R2 carried at least one plasmid of approximately of 23.1 kbp. A 636 bp fragment of the pcoR gene of the pco operon that encodes Cu resistance was amplified by PCR from plasmid DNA of strain R2. The pco genes are involved in Cu-resistance in some enteric and aerobic soil bacteria. Desulfovibrio R2 is a prospective strain for bioremediation purposes and for developing a homologous system for transformation of Cu-resistance in sulfate-reducing bacteria.

0 Followers
 · 
86 Views
  • Source
    • "Utgikar et al. (2001) estimated an EC50 (concentration causing 50% reduction in sulfate reduction activity) value of 10.5 mg/l for sulfate reduction. Copper resistance mediated by pco genes has also been noted for sulfate-reducing bacteria (SRB) (Karnachuk et al. 2003). Copper toxicity can be greatly reduced through sulfide precipitation, and precipitation has been shown to be an effective treatment technique for copper-containing waste water (Jalali and Baldwin 2000; Bhagat et al. 2004; Luptakova and Kusnierova 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this work was to isolate Cu-tolerant sulfate-reducers that could be used to produce copper sulfides under pure culture conditions. Three sulfate-reducing bacteria were isolated from wastewater effluents of a zinc-smelter in the Urals and their tolerance to copper varied between 325 and 2600 mg Cu l. Analysis of 16S rRNA gene sequences placed the isolates in the genus Desulfovibrio. The isolates showed pronounced saccharolytic growth. Growing cultures precipitated Cu as covellite (CuS) within less than a week. Extended incubation for 1 month lead to the formation of chalcocite (Cu2S) and chalcopyrite (CuFeS2).
    Geomicrobiology 06/2008; 25(5):219-227. DOI:10.1080/01490450802153124 · 1.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Es wurde eine neuartige Technologie zur biotechnologischen Reinigung von schwermetallbelasteten, sulfathaltigen Bergbauwässern entwickelt. Die Technologie basiert auf der technischen Kopplung von mikrobiell vermittelter Hydrolyse, Fermentation und mikrobieller Sulfatreduktion in einem selbststabilisierenden Prozess, wobei aus Abbau eines festen Substanzgemisches (Silage) Elektronendonor zur Sulfatreduktion bereitgestellt wird. Die Schwermetallelimination erfolgt vorrangig durch sulfidische Fällung, die technisch einstufig mit der mikrobiellen Sulfatreduktion realisiert wurde. Die organischen Verbindungen wurden durch Elution bereitgestellt bzw. durch hydrolytischen Abbau von polymeren Verbindungen. Hierfür wurde der Begriff der ?Aktiven Elution? geprägt. Die Konzeption wurde technisch zweistufig umgesetzt. In der ersten Stufe (R1) erfolgt die (Aktive) Elution, in der zweiten Stufe (R2) erfolgen Sulfatreduktion und Schwermetallelimination. Mit der verfahrenstechnischen Umsetzung wurde die Bereitstellung einer ausreichenden Menge an Elektronendonor in R1, eine effektive und stabile Sulfatreduktionsausbeute als Bedingung der Schwermetallelimination in R2 und eine weitgehende Trennung der mikrobiellen Prozesse in R1 und R2 bei Verweilzeiten von 69 h in R1 und 40 h in R2 erreicht. Bei Behandlung von wässrigen Lösungen mit 0,2 mM Ni2+, Cu2+, Zn2+, Fe2+ und Mn2+ konnte eine nahezu vollständige Elimination der Schwermetalle aus der Lösung erreicht werden. Es wurde ein strukturiertes mathematisches Modell für den zweistufigen Prozess auf der Basis von Literaturangaben entwickelt und anhand der kontinuierlichen Laborversuche überprüft. Es wurde ein erheblicher Einfluss schwermetallsulfidischer Präzipitate auf die mikrobiellen Prozesse festgestellt. Dabei wurde dieser Einfluss in Abhängigkeit von der Art der gebundenen Metallionen (Ni2+ oder/und Fe2+) und in Abhängigkeit der relativen räumlichen Anordnung von Sediment und Biomasse festgestellt.
  • [Show abstract] [Hide abstract]
    ABSTRACT: For bioremediation of copper-contaminated soils, it is essential to understand copper adsorption and chemical forms in soils related to microbes. In this study, a Penicillium strain, which can tolerate high copper concentrations up to 150mmol l−1 Cu2+, was isolated from a copper mining area. The objective was to study effects of this fungus on copper adsorptions in solutions and chemical forms in soils. Results from lab experiments showed the maximum biosorptions occurred at 360min with 6.15 and 15.08mg g−1 biomass from the media with Cu2+ of 50 and 500mg l−1, respectively. The copper was quickly adsorbed by the fungus within the contact time of the first 60min. To characterize the adsorption process of copper, four types of kinetics models were used to fit the copper adsorption data vs. time. Among the kinetics models, the two-constant equation gave the best results, as indicated by the high coefficients of determination (R 2 = 0.89) and high significance (p < 0.01). The addition of the fungal strain to autoclaved soil facilitated increases in concentrations of acid-soluble copper, copper bound to oxides, and of copper bound to organic matter (p < 0.05). However, the inoculation of Penicillium sp. A1 led to a decrease of water-soluble copper in the soil. The results suggested that Penicillium sp. A1 has the potential for bioremediation of copper-contaminated soils.
    Water Air and Soil Pollution 07/2008; 201(1):99-107. DOI:10.1007/s11270-008-9930-6 · 1.69 Impact Factor
Show more