Article

3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro.

Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106-4935, USA.
Molecular Pharmacology (Impact Factor: 4.41). 07/2003; 63(6):1223-9. DOI:10.1124/mol.63.6.1223
Source: PubMed

ABSTRACT Recent findings have implicated the 5-hydroxytryptamine 2B (5-HT2B) serotonin receptor in mediating the heart valve fibroplasia [valvular heart disease (VHD)] and primary pulmonary hypertension observed in patients taking the now-banned appetite suppressant fenfluramine (Pondimin, Redux). Via large-scale, random screening of a portion of the receptorome, we have discovered that the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") and its N-demethylated metabolite 3,4-methylenedioxyamphetamine (MDA) each preferentially bind to and activate human recombinant 5-HT2B receptors. We also demonstrate that MDMA and MDA, like fenfluramine and its N-deethylated metabolite norfenfluramine, elicit prolonged mitogenic responses in human valvular interstitial cells via activation of 5-HT2B receptors. We also report that pergolide and dihydroergotamine, two drugs recently demonstrated to induce VHD in humans, potently activate 5-HT2B receptors, thus validating this assay system for its ability to predict medications that might induce VHD. Our discovery that MDMA and a major metabolite, MDA, induce prolonged mitogenic responses in vitro similar to those induced by fenfluramine and norfenfluramine in vivo (i.e., valvular interstitial cell fibroplasia) predict that long-term MDMA use could lead to the development of fenfluramine-like VHD. Because of the widespread abuse of MDMA, these findings have major public health implications. These findings also underscore the necessity of screening current and future drugs at h5-HT2B receptors for agonist actions before their use in humans.

1 0
 · 
1 Bookmark
 · 
218 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality and, given its association with age, the prevalence of CAVD is expected to continue to rise as global life expectancy increases. No drug strategies currently exist to prevent or treat CAVD. Given that valve replacement is the only available clinical option, patients often cope with a deteriorating quality of life until diminished valve function demands intervention. The recognition that CAVD results from active cellular mechanisms suggests that the underlying pathways might be targeted to treat the condition. However, no such therapeutic strategy has been successfully developed to date. One hope was that drugs already used to treat vascular complications might also improve CAVD outcomes, but the mechanisms of CAVD progression and the desired therapeutic outcomes are often different from those of vascular diseases. Therefore, we discuss the benchmarks that must be met by a CAVD treatment approach, and highlight advances in the understanding of CAVD mechanisms to identify potential novel therapeutic targets.
    Nature Reviews Cardiology 01/2014; · 10.40 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The rhythmic opening and tightly closing of cardiac valve leaflets are cardiac cyclic events imposing to blood a unidirectional course along the vascular tree. Drugs with 5-HT2B agonism properties can seriously compromise this critical biological function for hemodynamic efficiency because their intrinsic pro-fibrotic effects make valvular coaptation blood regurgitant. Cardiac valve anatomy, physiology and pathology as well 5-HT2B receptor properties (coupling, effects mediated, biased agonism) are briefly exposed. Approaches to unveil 5-HT2B receptor liability of drug candidates are detailed. In silico computational models can speedily probe molecules for chemical signatures signaling 5-HT2B receptor affinity. In vitro radioligand competition assays allow quantifying receptor binding capacity (Ki, IC50), the pharmacological nature (agonism, antagonism) of which can be ascertained from cytosolic second messenger (inositol phosphates, Ca(++), MAPK2) changes. Potencies calculated from the latter readouts may show variability since they are readout and experimental condition (e.g., receptor density level of cell material expressing human 5-HT2B receptors) dependent. The in vivo valvulopathy effects of 5-HT2B receptor agonists can be assessed by echocardiographic measurements and valve histology in rats chronically treated with the candidate drug. Finally, safety margins calculated from nonclinical and clinical data are appraised in terms of the readout, usefulness and scientific reliability. The Safety Pharmacology toolbox for uncovering 5-HT2B receptor agonism liability of candidate drugs needs meticulous optimization and validation of all its (in silico, in vitro and in vivo) components to perfect human predictability power. In particular, since 5-HT2B receptor agonism is biased in nature, the most predictive readout(s) of valvular liability should be identified and prioritized in keeping with best scientific practice teachings.
    Journal of pharmacological and toxicological methods 12/2013; · 2.32 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: More than 200 novel psychoactive drugs have been reported in Europe, with 73 added in 2012 and additional compounds encountered every week in 2013. Many of these are "designer psychostimulants" which aim to mimic the subjective effects of amphetamines, cocaine or 3,4-methylenedioxymethylamphetamine (MDMA; "Ecstasy"). Several drugs are based on the beta-ketoamphetamine cathinone chemical structure, others include aminoindanes, aminotetralins, piperazines, amphetamine analogues and pipradrol derivatives. Although a detailed analysis of the pharmacology of these novel drugs is largely lacking, a number of scientific studies have been reported in 2011-2013 and these are reviewed. All of the novel psychostimulants activate monoamine systems in the brain - with differing dopamine (DA) v serotonin (5-HT) preferences. Those activating principally DA systems are amphetamine-like stimulants, such as naphyrone, desoxypipradrol, 3,4-methylenedioxypyrovalerone (MDPV), and benzylpiperazine while those preferentially activating 5-HT mechanisms are MDMA-like or cocaine-like stimulants, such as mephedrone, methylone and other substituted cathinones, aminoindanes, aminotetralins and piperazines. The ability of mephedrone and other novel psychostimulants to substitute for methylamphetamine or cocaine in drug discrimination tests in rats, and the ability of mephedrone to induce conditioned place preference and to sustain self-administration behaviour suggests that this and other cocaine/methylamphetamine-like drugs have dependence liability.
    Neuropharmacology 01/2014; · 4.11 Impact Factor