Article

Developmental changes in the Ca2+-regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in the spinal cord.

Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Developmental Brain Research (Impact Factor: 1.78). 07/2003; 143(1):33-46. DOI: 10.1016/S0165-3806(03)00097-X
Source: PubMed

ABSTRACT Aralar1 and citrin are two isoforms of the mitochondrial carrier of aspartate-glutamate (AGC), a calcium regulated carrier, which is important in the malate-aspartate NADH shuttle. The expression and cell distribution of aralar1 and citrin in brain cells has been studied during development in vitro and in vivo. Aralar1 is the only isoform expressed in neurons and its levels undergo a marked increase during in vitro maturation, which is higher than the increase in mitochondrial DNA in the same time window. The enrichment in aralar1 per mitochondria during neuronal maturation is associated with a prominent rise in the function of the malate-aspartate NADH shuttle. Paradoxically, during in vivo development of rat or mouse brain there is very little postnatal increase in total aralar1 levels per mitochondria. This is explained by the fact that astrocytes develop postnatally, have aralar1 levels much lower than neurons, and their increase masks that of aralar1. Aralar1 mRNA and protein are widely expressed throughout neuron-rich areas in adult mouse CNS with clear enrichments in sets of neuronal nuclei in the brainstem and, particularly, in the ventral horn of the spinal cord. These aralar1-rich neurons represent a subset of the cytochrome oxidase-rich neurons in the same areas. The presence of aralar1 could reflect a tonic activity of these neurons, which is met by the combination of high malate-aspartate NADH shuttle and respiratory chain activities.

Full-text

Available from: Araceli del Arco, Apr 19, 2015
1 Follower
 · 
231 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological and biochemical studies show that the sporadic forms of Alzheimer's disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events-mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.
    Frontiers in Physiology 01/2014; 5:522. DOI:10.3389/fphys.2014.00522
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has been derided as a “dead-end” waste product of anaerobic metabolism. Catalyzed by the near-equilibrium enzyme lactate dehydrogenase (LDH), the reduction of pyruvate to lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues of its own production. However, a substantial body of research directly contradicts any notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a model is forwarded in which the continuous formation and oxidation of lactate serves as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell is oxidized at the mitochondria of the same cell. From this perspective, an intracellular lactate shuttle operates much like the malate-aspartate shuttle (MAS); it is also proposed that the two shuttles are necessarily interconnected in a lactate-MAS. Among the requisite features of such a model, significant compartmentalization of LDH, much like the creatine kinase of the phosphocreatine shuttle, would facilitate net cellular lactate oxidation in a variety of cell types. http://journal.frontiersin.org/Journal/10.3389/fnins.2014.00366/abstract
    Frontiers in Neuroscience 11/2014; 8(366). DOI:10.3389/fnins.2014.00366
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human adults produce around 1000mmol of ammonia daily. Some is reutilized in biosynthesis. The remainder is waste and neurotoxic. Eventually most is excreted in urine as urea, together with ammonia used as a buffer. In extrahepatic tissues, ammonia is incorporated into nontoxic glutamine and released into blood. Large amounts are metabolized by the kidneys and small intestine. In the intestine, this yields ammonia, which is sequestered in portal blood and transported to the liver for ureagenesis, and citrulline, which is converted to arginine by the kidneys. The amazing developments in NMR imaging and spectroscopy and molecular biology have confirmed concepts derived from early studies in animals and cell cultures. The processes involved are exquisitely tuned. When they are faulty, ammonia accumulates. Severe acute hyperammonemia causes a rapidly progressive, often fatal, encephalopathy with brain edema. Chronic milder hyperammonemia causes a neuropsychiatric illness. Survivors of severe neonatal hyperammonemia have structural brain damage. Proposed explanations for brain edema are an increase in astrocyte osmolality, generally attributed to glutamine accumulation, and cytotoxic oxidative/nitrosative damage. However, ammonia neurotoxicity is multifactorial, with disturbances also in neurotransmitters, energy production, anaplerosis, cerebral blood flow, potassium, and sodium. Around 90% of hyperammonemic patients have liver disease. Inherited defects are rare. They are being recognized increasingly in adults. Deficiencies of urea cycle enzymes, citrin, and pyruvate carboxylase demonstrate the roles of isolated pathways in ammonia metabolism. Phenylbutyrate is used routinely to treat inherited urea cycle disorders, and its use for hepatic encephalopathy is under investigation. © 2014 Elsevier Inc. All rights reserved.
    Advances in clinical chemistry 01/2014; 67:73-150. DOI:10.1016/bs.acc.2014.09.002 · 4.30 Impact Factor