N-succinimidyl 3-[211At]astato-4-guanidinomethylbenzoate: an acylation agent for labeling internalizing antibodies with alpha-particle emitting 211At.

Department of Radiology, Duke University, Durham, North Carolina 27710, USA. .
Nuclear Medicine and Biology (Impact Factor: 2.52). 06/2003; 30(4):351-9. DOI: 10.1016/S0969-8051(03)00005-2
Source: PubMed

ABSTRACT The objective of this study was to develop a method for labeling internalizing monoclonal antibodies (mAbs) such as those reactive to the anti-epidermal growth factor receptor variant III (EGFRvIII) with the alpha-particle emitting radionuclide (211)At. Based on previous work utilizing the guanidine-containing acylation agent, N-succinimidyl 4-guanidinomethyl-3-[(131)I]iodobenzoate ([(131)I]SGMIB), we have now investigated the potential utility of its astato analogue for labeling the anti-EGFRvIII mAb L8A4. N-succinimidyl 3-[(211)At]astato-4-guanidinomethylbenzoate ([(211)At]SAGMB) in its Boc-protected form was prepared from a tin precursor in 61.7 +/- 13.1% radiochemical yield, in situ deprotected to [(211)At]SAGMB, which was coupled to L8A4 in 36.1 +/- 1.9% yield. Paired-label internalization assays demonstrated that tumor cell retention of radioactivity for L8A4 labeled using [(211)At]SAGMB was almost identical to L8A4 labeled using [(131)I]SGMIB, and 3-4-fold higher than for mAb radioiodinated using Iodogen. Paired-label biodistribution of L8A4 labeled using [(211)At]SAGMB and [(131)I]SGMIB in athymic mice hosting U87MGdeltaEGFR xenografts resulted in identical uptake of both (211)At and (131)I in tumor tissues over 24 h. Although higher levels of (211)At compared with (131)I were sometimes seen in tissues known to sequester free astatide, these (211)At/(131)I uptake ratios were considerably lower than those seen with other labeling methods. These results suggest that [(211)At]SAGMB may be a useful acylation agent for labeling internalizing mAbs with (211)At.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanobodies are approximately 15-kDa proteins based on the smallest functional fragments of naturally occurring heavy chain-only antibodies and represent an attractive platform for the development of molecularly targeted agents for cancer diagnosis and therapy. Because the human epidermal growth factor receptor type 2 (HER2) is overexpressed in breast and ovarian carcinoma, as well as in other malignancies, HER2-specific Nanobodies may be valuable radiodiagnostics and therapeutics for these diseases. The aim of the present study was to evaluate the tumor-targeting potential of anti-HER2 5F7GGC Nanobody after radioiodination with the residualizing agent N-succinimidyl 4-guanidinomethyl 3-(125/131)I-iodobenzoate (*I-SGMIB). The 5F7GGC Nanobody was radiolabeled using *I-SGMIB and, for comparison, with N(ε)-(3-*I-iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-GEEEK (*I-IB-Mal-d-GEEEK), another residualizing agent, and by direct radioiodination using IODO-GEN ((125)I-Nanobody). The 3 labeled Nanobodies were evaluated in affinity measurements, and paired-label internalization assays were performed on HER2-expressing BT474M1 breast carcinoma cells and in paired-label tissue distribution measurements in mice bearing subcutaneous BT474M1 xenografts. *I-SGMIB-Nanobody was produced in 50.4% ± 3.6% radiochemical yield and exhibited a dissociation constant of 1.5 ± 0.5 nM. Internalization assays demonstrated that intracellular retention of radioactivity was up to 1.5-fold higher for *I-SGMIB-Nanobody than for coincubated (125)I-Nanobody or *I-IB-Mal-d-GEEEK-Nanobody. Peak tumor uptake for *I-SGMIB-Nanobody was 24.50% ± 9.89% injected dose/g at 2 h, 2- to 4-fold higher than observed with other labeling methods, and was reduced by 90% with trastuzumab blocking, confirming the HER2 specificity of localization. Moreover, normal-organ clearance was fastest for *I-SGMIB-Nanobody, such that tumor-to-normal-organ ratios greater than 50:1 were reached by 24 h in all tissues except lungs and kidneys, for which the values were 10.4 ± 4.5 and 5.2 ± 1.5, respectively. Labeling anti-HER2 Nanobody 5F7GGC with *I-SGMIB yields a promising new conjugate for targeting HER2-expressing malignancies. Further research is needed to determine the potential utility of *I-SGMIB-5F7GGC labeled with (124)I, (123)I, and (131)I for PET and SPECT imaging and for targeted radiotherapy, respectively.
    Journal of Nuclear Medicine 02/2014; · 5.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeting of radiation, drugs, and protein toxins to cancers selectively with monoclonal antibodies (MAbs) has been a topic of considerable interest and an area of continued development. Radioimmunotherapy (RAIT) of lymphoma using directly labeled MAbs is of current interest after approval of two radiolabeled anti-CD20 MAbs, as illustrated with the near 100% overall response rate obtained in a recent clinical trial using an investigational radiolabeled anti-CD22 MAb, 90Y-epratuzumab. The advantage of pretargeted RAIT over directly labeled MAbs is continuing to be validated in preclinical models of lymphoma and solid tumors. Importantly, the advantages of combining RAIT with radiation sensitizers, with immunotherapy, or a drug conjugate targeting a different antigen are being studied clinically and preclinically. The area of drug-conjugated antibodies is progressing with encouraging data published for the trastuzumab-DM1 conjugate in a phase I clinical trial in HER2-positive breast cancer. The Dock-and-Lock platform technology has contributed to the design and the evaluation of complex antibody-cytokine and antibody-toxin conjugates. This review describes the advances made in these areas, with illustrations taken from advances made in the authors' institutions.
    The Scientific World Journal 01/2010; 10:2070-89. · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction The clinical development of radioimmunotherapy with astatine-211 is limited by the lack of a stable radiolabeling method for antibody fragments. An astatinated N-heterocyclic carbene (NHC) Rhodium complex was assessed for the improvement of radiolabeling methodologies with astatine. Methods Wet harvested astatine-211 in diisopropyl ether was used. Astatine was first reduced with cysteine then was reacted with a chlorinated Rh-NHC precursor to allow the formation of the astatinated analogue. Reaction conditions have been optimized. Astatine and iodine reactivity were also compared. Serum stability of the astatinated complex has been evaluated. Results Quantitative formation of astatide was observed when cysteine amounts higher than 46.2 nmol/μl of astatine solution were added. Nucleophilic substitution kinetics showed that high radiolabeling yields were obtained within 15 min at 60 °C (88%) or within 5 min at 100 ° C (95%). Chromatographic characteristics of this new astatinated compound have been correlated with the cold iodinated analog ones. The radioiodinated complex was also synthesized from the same precursor (5 min. at 100 °C, up to 85%) using [125I]NaI as a radiotracer. In vitro stability of the astatinated complex was controlled after 15 h. incubation in human serum at 4 °C and 37 °C. No degradation was observed, indicating the good chemical and enzymatic stability. Conclusion The astatinated complex was obtained in good yield and exhibits good chemical and enzymatic stability. These preliminary results demonstrate the interest of this new radiolabeling methodology and further functionalizations should open new possibilities in astatine chemistry. Advances in Knowledge and Implications for patient Care Although there are many steps and pitfalls before clinical use for a new prosthetic group from the family of NHC complexes, this work may open a new path for astatine-211 targeting.
    Nuclear Medicine and Biology 01/2013; · 2.52 Impact Factor