Article

Regulatory light chains of striated muscle myosin. Structure, function and malfunction.

Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA.
Current Drug Targets - Cardiovascular & Hematological Disorders 07/2003; 3(2):187-97. DOI: 10.2174/1568006033481474
Source: PubMed

ABSTRACT Striated (skeletal and cardiac) muscle is activated by the binding of Ca(2+) to troponin C and is regulated by the thin filament proteins, tropomyosin and troponin. Unlike in molluscan or smooth muscles, the myosin regulatory light chains (RLC) of striated muscles do not play a major regulatory role and their function is still not well understood. The N-terminal domain of RLC contains a 'Ca(2+)-Mg(2+)'-binding site and, analogous to that of smooth muscle myosin, also contains a phosphorylation site. During muscle contraction, the increase in Ca(2+) concentration activates the Ca(2+)/calmodulin-dependent myosin light chain kinase and leads to phosphorylation of the RLC. In agreement with other laboratories we have demonstrated that phosphorylation and Ca(2+) binding to the RLC play an important modulatory role in striated muscle contraction. Furthermore, the ventricular isoform of human cardiac RLC has been shown to be one of the sarcomeric proteins associated with familial hypertrophic cardiomyopathy (FHC), an autosomal dominant disease characterized by left ventricular hypertrophy, myofibrillar disarray and sudden cardiac death. Our recent studies have demonstrated that phosphorylation and Ca(2+) binding to human ventricular RLC are significantly altered by the FHC mutations and that their detrimental effects depend upon the specific position of the missense mutation, whether located in the proximity of the RLC 'Ca(2+)-Mg(2+)'-binding site or the phosphorylation site (Serine 15). We have also shown that there is a functional coupling between Ca(2+) and/or Mg(2+) binding to the RLC and phosphorylation and that the FHC mutations can affect this relationship. Further in vivo studies are necessary to investigate the mechanisms involved in the pathogenesis of RLC-linked FHC.

Full-text

Available from: Danuta Szczesna-Cordary, Jun 09, 2015
2 Followers
 · 
138 Views
  • Source
    Biophysical Journal 01/2014; 106(2):33a. DOI:10.1016/j.bpj.2013.11.252 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dilated Cardiomyopathy (DCM) is a disease of the myocardium characterized by left ventricular dilatation and diminished contractile function. In this report we describe a novel DCM mutation identified for the first time in the myosin regulatory light chain (RLC), replacing Aspartic Acid at position 94 with Alanine (D94A). The mutation was identified by exome sequencing of three adult first-degree relatives who met formal criteria for idiopathic DCM. To gain insight into the functional significance of this pathogenic MYL2 variant, we have cloned and purified the human ventricular RLC wild-type (WT) and D94A-mutant proteins and performed in vitro experiments using RLC-exchanged porcine cardiac preparations. The mutation was observed to induce a reduction in the α-helical content of the RLC and imposed intra-molecular rearrangements. The Ca(2+) -calmodulin-activated myosin light chain kinase phosphorylation of RLC was not affected by D94A. The mutation was seen to impair the binding of RLC to the MHC (myosin heavy chain), and its incorporation into the RLC-depleted porcine myosin. The actin-activated ATPase activity of mutant-reconstituted porcine cardiac myosin was significantly higher compared to ATPase of WT. No changes in myofibrillar ATPase-pCa relationship were observed in WT- or D94A-reconstituted preparations. Measurements of contractile force showed a slightly reduced maximal tension per cross-section of muscle with no change in calcium sensitivity of force in D94A-reconstituted skinned porcine papillary muscle strips compared with WT. Our data indicate that subtle structural rearrangements in the RLC molecule followed by its impaired interaction with the MHC may trigger functional abnormalities contributing to the DCM phenotype. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    FEBS Journal 03/2015; DOI:10.1111/febs.13286 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac muscle relaxation is an essential step in the cardiac cycle. Even when the contraction of the heart is normal and forceful, a relaxation phase that is too slow will limit proper filling of the ventricles. Relaxation is too often thought of as a mere passive process that follows contraction. However, many decades of advancements in our understanding of cardiac muscle relaxation have shown it is a highly complex and well-regulated process. In this review, we will discuss three distinct events that can limit the rate of cardiac muscle relaxation: the rate of intracellular calcium decline, the rate of thin-filament de-activation, and the rate of cross-bridge cycling. Each of these processes are directly impacted by a plethora of molecular events. In addition, these three processes interact with each other, further complicating our understanding of relaxation. Each of these processes is continuously modulated by the need to couple bodily oxygen demand to cardiac output by the major cardiac physiological regulators. Length-dependent activation, frequency-dependent activation, and β-adrenergic regulation all directly and indirectly modulate calcium decline, thin-filament deactivation, and cross-bridge kinetics. We hope to convey our conclusion that cardiac muscle relaxation is a process of intricate checks and balances, and should not be thought of as a single rate-limiting step that is regulated at a single protein level. Cardiac muscle relaxation is a system level property that requires fundamental integration of three governing systems: intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics.
    Biophysical Reviews 12/2014; 6(3-):273-289. DOI:10.1007/s12551-014-0143-5