Article

Obesity in transgenic female mice with constitutively elevated luteinizing hormone secretion.

Department of Physiology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
AJP Endocrinology and Metabolism (Impact Factor: 4.51). 10/2003; 285(4):E812-8. DOI: 10.1152/ajpendo.00367.2002
Source: PubMed

ABSTRACT Transgenic (TG) female mice, expressing a chimeric bovine luteinizing hormone (LH) beta-subunit/human chorionic gonadotropin beta-subunit COOH-terminal extension (bLHbeta-CTP) gene, produce high levels of circulating LH and serve as a model for functional ovarian hyperandrogenism and follicular cysts. We report here that obesity is a typical feature of these female mice. The mean body weight of the bLHbeta-CTP females was significantly higher than in controls at, and beyond 5 wk of age, and at 5 mo, it was 32% increased. At this age, the amount of white adipose tissue in the bLHbeta-CTP females was significantly increased, as reflected by the weight difference of the retroperitoneal fat pad. In addition, the expression of leptin mRNA in white adipose tissue of the TG females was elevated about twofold. Serum leptin and insulin levels, and food intake, were also increased significantly in the TG females. Brown adipose tissue (BAT) thermogenic activity, as measured by GDP binding to BAT mitochondria, was reduced (P < 0.05). Ovariectomy at the age of 3 wk totally prevented the development of obesity. In summary, the present results show that intact female bLHbeta-CTP mice are obese, have increased food consumption, and reduced BAT thermogenic activity. The weight gain can be explained partly by elevated androgens but is probably also contributed to the increased adrenal steroidogenesis. Hence, the bLHbeta-CTP mice provide a useful model for studying obesity related to elevated LH secretion, with consequent alterations in ovarian and adrenal function.

0 Bookmarks
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
    Obesity 05/2006; 14(4):529-644. · 3.92 Impact Factor