Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II.

Banting and Best Department of Medical Research, Toronto Yeast Proteomics Organization, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
Molecular and Cellular Biology (Impact Factor: 5.04). 07/2003; 23(12):4207-18. DOI: 10.1128/MCB.23.12.4207-4218.2003
Source: PubMed

ABSTRACT Set2 methylates Lys36 of histone H3. We show here that yeast Set2 copurifies with RNA polymerase II (RNAPII). Chromatin immunoprecipitation analyses demonstrated that Set2 and histone H3 Lys36 methylation are associated with the coding regions of several genes that were tested and correlate with active transcription. Both depend, as well, on the Paf1 elongation factor complex. The C terminus of Set2, which contains a WW domain, is also required for effective Lys36 methylation. Deletion of CTK1, encoding an RNAPII CTD kinase, prevents Lys36 methylation and Set2 recruitment, suggesting that methylation may be triggered by contact of the WW domain or C terminus of Set2 with Ser2-phosphorylated CTD. A set2 deletion results in slight sensitivity to 6-azauracil and much less beta-galactosidase produced by a reporter plasmid, resulting from a defect in transcription. In synthetic genetic array (SGA) analysis, synthetic growth defects were obtained when a set2 deletion was combined with deletions of all five components of the Paf1 complex, the chromodomain elongation factor Chd1, the putative elongation factor Soh1, the Bre1 or Lge1 components of the histone H2B ubiquitination complex, or the histone H2A variant Htz1. SET2 also interacts genetically with components of the Set1 and Set3 complexes, suggesting that Set1, Set2, and Set3 similarly affect transcription by RNAPII.


Available from: Minkyu Kim, Aug 14, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modifications of core histones play an important role in the epigenetic regulation of chromatin dynamics and gene expression. In Saccharomyces cerevisiae methylation marks at K4, K36, and K79 of histone H3 are associated with gene transcription. Although Set2-mediated H3K36 methylation is enriched throughout the coding region of active genes and prevents aberrant transcriptional initiation within coding sequences, it is not known if transcription of one locus impacts the methylation pattern of neighbouring areas and for how long H3K36 methylation is maintained after transcription termination. Our results demonstrate that H3K36 methylation is restricted to the transcribed sequence only and the modification does not spread to adjacent loci downstream from transcription termination site. We also show that H3K36 trimethylation mark persists in the locus for at least 60 minutes after transcription inhibition, suggesting a short epigenetic memory for recently occurred transcriptional activity. Our results indicate that both replication-dependent exchange of nucleosomes and the activity of histone demethylases Rph1, Jhd1 and Gis1 contribute to the turnover of H3K36 methylation upon shut-down of transcription.
    PLoS ONE 10(3):e0120200. DOI:10.1371/journal.pone.0120200 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A. nidulans kdmA encodes a member of the KDM4 family of jumonji histone demethylase proteins, highly similar to metazoan orthologues both within functional domains and in domain architecture. This family of proteins exhibits demethylase activity toward lysines 9 and 36 of histone H3 and plays a prominent role in gene expression and chromosome structure in many species. Mass spectrometry mapping of A. nidulans histones revealed that around 3% of bulk histone H3 carried trimethylated H3K9 (H3K9me3) but more than 90% of histones carried either H3K36me2 or H3K36me3. KdmA functions as H3K36me3 demethylase and has roles in transcriptional regulation. Genetic manipulation of KdmA levels is tolerated without obvious effect in most conditions, but strong phenotypes are evident under various conditions of stress. Transcriptome analysis revealed that - in submerged early and late cultures - between 25% and 30% of the genome is under KdmA influence, respectively. Transcriptional imbalance in the kdmA deletion mutant may contribute to the lethal phenotype observed upon exposure of mutant cells to low-density visible light on solid medium. While KdmA acts as transcriptional co-repressor of primary metabolism (PM) genes it is required for full expression of several genes involved in biosynthesis of secondary metabolites (SM). This article is protected by copyright. All rights reserved.
    Molecular Microbiology 02/2015; DOI:10.1111/mmi.12977 · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs. Copyright © 2015 Naguleswaran et al.
    mBio 03/2015; 6(2). DOI:10.1128/mBio.00114-15 · 6.88 Impact Factor