Repression of the human ANT2 gene in growth-arrested human diploid cells: The role of nuclear factor 1 (NF1)

Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden.
Journal of Biological Chemistry (Impact Factor: 4.57). 09/2003; 278(33):30624-33. DOI: 10.1074/jbc.M303530200
Source: PubMed


Adenine nucleotide translocase-2 (ANT2) catalyzes the exchange of ATP for ADP across the mitochondrial membrane, thus playing an important role in maintaining the cytosolic phosphorylation potential required for cell growth. Expression of ANT2 is activated by growth stimulation of quiescent cells and is down-regulated when cells become growth-arrested. In this study, we address the mechanism of growth arrest repression. Using a combination of transfection, in vivo dimethyl sulfate mapping, and in vitro DNase I mapping experiments, we identified two protein-binding elements (Go-1 and Go-2) that are responsible for growth arrest of ANT2 expression in human diploid fibroblasts. Proteins that bound the Go elements were purified and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry as members of the NF1 family of transcription factors. Chromatin immunoprecipitation analysis showed that NF1 was bound to both Go-1 and Go-2 in quiescent human diploid cells in vivo, but not in the same cells stimulated to growth by serum. NF1 binding correlated with the disappearance of ANT2 transcripts in quiescent cells. Furthermore, overexpression of NF1-A, -C, and -X in NIH3T3 cells repressed expression of an ANT2-driven reporter gene construct. Two additional putative repressor elements in the ANT2 promoter, an Sp1 element juxtaposed to the transcription start site and a silencer centered at nucleotide -332, did not appear to contribute to growth arrest repression. Thus, enhanced binding of NF1 is a key step in the growth arrest repression of ANT2 transcription. To our knowledge, this is the first report showing a role for NF1 in growth arrest.

8 Reads
  • Source
    • "Until now, 53 mitochondrial carriers have been identified on the human genome a nd more than half have been functionally characterized [6,7,8]. Although they play a crucial role in intermediary metabolism, only a few of them have been studied transcriptionally to some extent: the adenine nucleotide carrier [9,10,11,12,13], the uncoupling proteins [14,15,16,17,18,19], and the phosphate carrier [20] genes. Recently, the citrate carrier (CIC), encoded by SLC25A1, and the carnitine/acylcarnitine carrier (CAC), encoded by SLC25A20, have also been transcriptionally studied. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional regulation of genes involved in fatty acid metabolism is considered the major long-term regulatory mechanism controlling lipid homeostasis. By means of this mechanism, transcription factors, nutrients, hormones and epigenetics control not only fatty acid metabolism, but also many metabolic pathways and cellular functions at the molecular level. The regulation of the expression of many genes at the level of their transcription has already been analyzed. This review focuses on the transcriptional control of two genes involved in fatty acid biosynthesis and oxidation: the citrate carrier (CIC) and the carnitine/ acylcarnitine/carrier (CAC), which are members of the mitochondrial carrier gene family, SLC25. The contribution of tissue-specific and less tissue-specific transcription factors in activating or repressing CIC and CAC gene expression is discussed. The interaction with drugs of some transcription factors, such as PPAR and FOXA1, and how this interaction can be an attractive therapeutic approach, has also been evaluated. Moreover, the mechanism by which the expression of the CIC and CAC genes is modulated by coordinated responses to hormonal and nutritional changes and to epigenetics is highlighted.
    Biology 03/2013; 2(1):284-303. DOI:10.3390/biology2010284
  • Source
    • "Genes regulated by NFIX have been identified and include repression of pro-angiogenic PDGFA [24] and p21, where repression surprisingly leads to growth inhibition [25]. NFIX may also slow down cell growth via downregulation of the adenine nucleotide translocase-2 gene (ANT2) [26]. In addition, NFIX has been shown to confer resistance towards transformation by nuclear but not cytoplasmic oncogenes [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherited genetic factors such as E-cadherin (CDH1) promoter variants are believed to influence the risk towards sporadic diffuse gastric cancer (DGC). Recently, a new regulatory region essential for CDH1 transcription has been identified in CDH1 intron 2. We genotyped all known polymorphisms located within conserved sequences of CDH1 intron 2 (rs10673765, rs9932686, rs1125557, rs9282650, rs9931853) in an Italian population consisting of 134 DGC cases and 100 healthy controls (55 patient relatives and 45 unrelated, matched individuals). The influence of individual variants on DGC risk was assessed using chi2-tests and logistic regression. The relative contribution of alleles was estimated by haplotype analysis. We observed a significant (p < 0.0004) association of the CDH1 163+37235G>A variant (rs1125557) with DGC risk. Odds ratios were 4.55 (95%CI = 2.09-9.93) and 1.38 (95%CI = 0.75-2.55) for AA and GA carriers, respectively. When adjusted for age, sex, smoking status, alcohol intake and H. pylori infection, the risk estimates remained largely significant for AA carriers. Haplotype analysis suggested the 163+37235A-allele contributes to disease risk independently of the other variants studied. The CDH1 163+37235G>A polymorphism may represent a novel susceptibility variant for sporadic DGC if confirmed in other populations. Considering the broad expression of E-cadherin in epithelia, this exploratory study encourages further evaluation of the 163+37235A-allele as a susceptibility variant in other carcinomas.
    BMC Cancer 05/2008; 8(1):138. DOI:10.1186/1471-2407-8-138 · 3.36 Impact Factor
  • Source
    • "Indeed, the overexpressions of ANT1 or ANT3 induce apoptosis while ANT2 lacks this proapoptotic activity [17,18]. ANT2 repression also leads to cell growth arrest and increases mitochondrial membrane potential from human cells as well as chemosensitized cancer cells [10,12], implying that ANT2 inhibits mitochondrial membrane permeability and acts as an antiapoptotic oncoprotein. We therefore hypothesized that ANT2 can be a promising candidate for cancer therapy based on specific molecular targeting. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenine nucleotide translocator (ANT) 2 is highly expressed in proliferative cells, and ANT2 induction in cancer cells is known to be directly associated with glycolytic metabolisms and carcinogenesis. In addition, ANT2 repression results in the growth arrest of human cells, implying that ANT2 is a candidate for cancer therapy based on molecular targeting. We utilized an ANT2-specific RNA interference approach to inhibit ANT2 expression for evaluating its antitumor effect in vitro and in vivo. Specifically, to investigate the therapeutic potential of ANT2 repression, we used a DNA vector-based RNA interference approach by expressing shRNA to knockdown ANT2 in breast cancer cell lines overexpressing ANT2. ANT2 shRNA treatment in breast cancer cell line MDA-MB-231 repressed cell growth as well as proliferation. In addition, cell cycle arrest, ATP depletion and apoptotic cell death characterized by the potential disruption of mitochondrial membrane were observed from the ANT2 shRNA-treated breast cancer cells. Apoptotic breast cancer cells transfected with ANT2 shRNA also induced a cytotoxic bystander effect that generates necrotic cell death to the neighboring cells. The intracellular levels of TNFalpha and TNF-receptor I were increased in ANT2 shRNA transfected cells and the bystander effect was partly blocked by anti-TNFalpha antibody. Ultimately, ANT2 shRNA effectively inhibited tumor growth in vivo. These results suggest that vector-based ANT2 RNA interference could be an efficient molecular therapeutic method for breast cancer with high expression of ANT2.
    Breast cancer research: BCR 02/2008; 10(1):R11. DOI:10.1186/bcr1857 · 5.49 Impact Factor
Show more

Similar Publications