Expression and localization of lung surfactant protein A in human tissues.

Department of Immunology and Microbiology, Institute of Medical Biology, University of Southern Denmark, Winsløwparken 21.1, DK-5000 Odense C, Denmark.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.11). 12/2003; 29(5):591-7. DOI: 10.1165/rcmb.2002-0274OC
Source: PubMed

ABSTRACT Lung surfactant protein A (SP-A) is a collectin produced by alveolar type II cells and Clara cells. It binds to carbohydrate structures on microorganisms, initiating effector mechanisms of innate immunity and modulating the inflammatory response in the lung. Reverse transcriptase-polymerase chain reaction was performed on a panel of RNAs from human tissues for SP-A mRNA expression. The lung was the main site of synthesis, but transcripts were readily amplified from the trachea, prostate, pancreas, and thymus. Weak expression was observed in the colon and salivary gland. SP-A sequences derived from lung and thymus mRNA revealed the presence of both SP-A1 and SP-A2, whereas only SP-A2 expression was found in the trachea and prostate. Monoclonal antibodies were raised against SP-A and characterized. One of these (HYB 238-4) reacted in Western blotting with both reduced and unreduced SP-A, with N-deglycosylated and collagenase-treated SP-A, and with both recombinant SP-A1 and SP-A2. This antibody was used to demonstrate SP-A in immunohistochemistry of human tissues. Strong SP-A immunoreactivity was seen in alveolar type-II cells, Clara cells, and on and within alveolar macrophages, but no extrapulmonary SP-A immunoreactivity was observed. In contrast to lung surfactant protein D (SP-D), which is generally expressed on mucosal surfaces, SP-A seems to be restricted to the respiratory system.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surfactant proteins A and D are pattern recognition molecules that play a role in pulmonary host defence. In this paper, we describe for the first time the expression and localisation of both collectins in various porcine tissues using a combination of in situ hybridisation (ISH), RT-PCR and immunohistochemistry (IHC). SP-D was expressed in several tissues including lung, tongue, intestinal tract, thymus, skin, gall bladder and lacrimal gland. Focal SP-D expression was detected in oesophagus, stomach, kidney, liver, prostate and spleen with both histological techniques. These tissues tested negative with RT-PCR. In contrast, SP-A expression was limited to the lung as measured by ISH and IHC. Interestingly, analysis by RT-PCR showed that thymus, trachea, jejunum and duodenum are positive for the presence of SP-A mRNA. We conclude that the combination of different methods can be advantageous if tissue-specific expression is studied. The importance of SP-D in innate immune defence of the pig is underlined by its expression at the potential ports of entry of pathogens.
    Molecular Immunology 08/2007; 44(13):3324-32. DOI:10.1016/j.molimm.2007.02.025 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding preferentially to sugars on a broad spectrum of pathogen surfaces and thereby facilitating immune functions including viral neutralization, clearance of bacteria, fungi and apoptotic and necrotic cells, modulation of allergic reactions, and resolution of inflammation. SP-A and SP-D can interact with receptor molecules present on immune cells leading to enhanced microbial clearance and modulation of inflammation. SP-A and SP-D also modulate the functions of cells of the adaptive immune system including dendritic cells and T cells. Studies on SP-A and SP-D polymorphisms and protein levels in bronchoalveolar lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic polymorphisms, structural variants, and serum levels of human SP-A and SP-D and their associations with human pulmonary disease.
    Immunobiology 02/2007; 212(4-5):381-416. DOI:10.1016/j.imbio.2007.01.003 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surfactant proteins SP-A and SP-D, and complement protein C1q are soluble innate immune pattern recognizing molecules. SP-A, SP-D and C1q have an overall similar structure composed of an N-terminal triple-helical collagen region that is followed by a trimeric globular domain. While SP-A and SP-D belong to the collectin family (collagen containing lectin), C1q is the first recognition subcomponent of the classical pathway of the complement system. Recently, SP-A, SP-D and C1q have been considered to play important roles in early and late pregnancy. However, their expression in early human decidua has not been examined. Here, we investigated whether SP-A, SP-D and C1q are expressed within first trimester decidua in humans and their expression is associated with trophoblasts and decidual stromal cells. Decidual samples from women undergoing elective vaginal termination of pregnancy during first trimester were obtained from 25 subjects. Immunohistochemical studies using anti-human SP-A, anti-human SP-D and anti-human C1q antibodies were performed on decidual tissue sections along with anti-vimentin and cytokeratin-7 antibodies to identify stromal cells and trophoblasts. The expression was also examined by immunostaining and PCR using decidual and stromal cells. C1q expression was significantly higher when compared to SP-A and SP-D in the first trimester human decidua. Double immunostaining revealed that all stromal cells and trophoblasts expressed SP-A, SP-D and C1q, while only few invasive trophoblasts expressed C1q. Thus, expression of SP-A, SP-D and C1q in human decidua during first trimester suggests potential role of SP-A, SP-D and C1q during the early stages of pregnancy including implantation, trophoblast invasion and placental development. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Molecular Immunology 03/2015; 66(2). DOI:10.1016/j.molimm.2015.03.001 · 3.00 Impact Factor