Article

Caught up in a Wnt storm: Wnt signaling in cancer.

Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 07/2003; 1653(1):1-24. DOI: 10.1016/S0304-419X(03)00005-2
Source: PubMed

ABSTRACT The Wnt signaling pathway, named for its most upstream ligands, the Wnts, is involved in various differentiation events during embryonic development and leads to tumor formation when aberrantly activated. Molecular studies have pinpointed activating mutations of the Wnt signaling pathway as the cause of approximately 90% of colorectal cancer (CRC), and somewhat less frequently in cancers at other sites, such as hepatocellular carcinoma (HCC). Ironically, Wnts themselves are only rarely involved in the activation of the pathway during carcinogenesis. Mutations mimicking Wnt stimulation-generally inactivating APC mutations or activating beta-catenin mutations-result in nuclear accumulation of beta-catenin which subsequently complexes with T-cell factor/lymphoid enhancing factor (TCF/LEF) transcription factors to activate gene transcription. Recent data identifying target genes has revealed a genetic program regulated by beta-catenin/TCF controlling the transcription of a suite of genes promoting cellular proliferation and repressing differentiation during embryogenesis, carcinogenesis, and in the post-embryonic regulation of cell positioning in the intestinal crypts. This review considers the spectra of tumors arising from active Wnt signaling and attempts to place perspective on recent data that begin to elucidate the mechanisms prompting uncontrolled cell growth following induction of Wnt signaling.

2 Bookmarks
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Blood vessel stability is essential for embryonic development; in the adult, many diseases are associated with loss of vascular integrity. The ETS transcription factor ERG drives expression of VE-cadherin and controls junctional integrity. We show that constitutive endothelial deletion of ERG (Erg(cEC-KO)) in mice causes embryonic lethality with vascular defects. Inducible endothelial deletion of ERG (Erg(iEC-KO)) results in defective physiological and pathological angiogenesis in the postnatal retina and tumors, with decreased vascular stability. ERG controls the Wnt/β-catenin pathway by promoting β-catenin stability, through signals mediated by VE-cadherin and the Wnt receptor Frizzled-4. Wnt signaling is decreased in ERG-deficient endothelial cells; activation of Wnt signaling with lithium chloride, which stabilizes β-catenin levels, corrects vascular defects in Erg(cEC-KO) embryos. Finally, overexpression of ERG in vivo reduces permeability and increases stability of VEGF-induced blood vessels. These data demonstrate that ERG is an essential regulator of angiogenesis and vascular stability through Wnt signaling. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract β-catenin is the key component of the canonical Wnt pathway and plays a crucial role in a multitude of developmental and homeostatic processes. The different tasks of β-catenin are orchestrated by its subcellular localization and participation in multiprotein complexes. To gain a better understanding of β-catenin's role in living cells we have generated a new set of single domain antibodies, referred to as nanobodies, derived from heavy chain antibodies of camelids. We selected nanobodies recognizing the N-terminal, core or C-terminal domain of β-catenin and applied these new high-affinity binders as capture molecules in sandwich immunoassays and co-immunoprecipitations of endogenous β-catenin complexes. In addition, we engineered intracellularly functional anti-β-catenin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. For the first time, we were able to visualize the subcellular localization and nuclear translocation of endogenous β-catenin in living cells using these chromobodies. Moreover, the chromobody signal allowed us to trace the accumulation of diffusible, hypo-phosphorylated β-catenin in response to compound treatment in real time using High Content Imaging. The anti-β-catenin nanobodies and chromobodies characterized in this study are versatile tools that enable a novel and unique approach to monitor the dynamics of subcellular β-catenin in biochemical and cell biological assays. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Molecular &amp Cellular Proteomics 01/2015; DOI:10.1074/mcp.M114.044016 · 7.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wnt signaling pathway has regulatory roles in cell proliferation, differentiation, and polarity. Aberrant Wnt pathway regulation can lead to abnormal cell proliferation and cancer, and loss of Wnt7a expression has been demonstrated in lung cancer cell lines. E-cadherin keeps intercellular integrity and prevents metastasis. Therefore, E-cadherin has been known as a prognostic factor in cancer. In the present study, we investigated the E-cadherin expression status by immunohistochemical stain and the Wnt7a promoter methylation status in human non-small cell lung carcinoma (NSCLC) by methylation-specific PCR. We also analyzed their correlations with clinicopathological factors. Methylation of the Wnt7a gene promoter was detected in the lung tissues of 32 of 121 (26.4%) patients with NSCLC. Wnt7a promoter methylation was correlated with advanced tumor stage (P = 0.036) and distant metastasis (P = 0.037). In addition, Wnt7a promoter methylation showed correlation with loss of E-cadherin expression (P < 0.001). However, Wnt7a promoter methylation was not closely related with gender, age, histological type, or smoking habit. Even though Wnt7a methylation could not show significant correlation with the long term survival of the patients with limited follow up data, these findings suggest that loss of the Wnt7a gene induced by promoter methylation might be another prognostic factor for NSCLC and that restoration of Wnt7a may be a promising treatment for NSCLC.

Full-text (2 Sources)

Download
69 Downloads
Available from
Jun 3, 2014