Antidepressant-like effect of agmatine and its possible mechanism

Division of Psychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
European Journal of Pharmacology (Impact Factor: 2.68). 06/2003; 469(1-3):81-8. DOI: 10.1016/S0014-2999(03)01735-7
Source: PubMed

ABSTRACT In mammalian brain, agmatine is an endogenous neurotransmitter and/or neuromodulator, which is considered as an endogenous ligand for imidazoline receptors. In this study, the antidepressant-like action of agmatine administered p.o. or s.c. was evaluated in three behavioral models in mice or rats. Agmatine at doses 40 and 80 mg/kg (p.o.) reduced immobility time in the tail suspension test and forced swim test in mice or at dose 20 mg/kg (s.c.) in the forced swim test. Agmatine also reduced immobility time at 10 mg/kg (p.o.) or at 1.25, 2.5 and 5 mg/kg (s.c.) in the forced swim test in rats. These results firstly indicated that agmatine possessed an antidepressant-like action. With 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and lactic dehydrogenase (LDH) assay, 1, 10 and 100 microM agmatine or a classical antidepressant, 2.5 and 10 microM desipramine, protected PC12 cells from the lesion induced by 300 microM N-methyl-D-aspartate (NMDA) treatment for 24 h. Using high-performance liquid chromatography with electrochemical detection (HPLC-ECD), it was found that the levels of monoamines including norepinephrine, epinephrine, dopamine or 5-hydroxytryptamine (5-HT) in PC12 cells decreased after the treatment with 200 microM NMDA for 24 h, while in the presence of 1 and 10 microM agmatine or 1 and 5 microM desipramine, the levels of norepinephrine, epinephrine or dopamine were elevated significantly while 5-HT did not change. Moreover, norepinephrine, 5-HT or dopamine had the same cytoprotective effect as agmatine at doses 0.1, 1 and 10 microM. In the fura-2/AM (acetoxymethyl ester) labeling assay, 1 and 10 microM agmatine, 1 and 5 microM desipramine or monoamines norepinephrine, 5-HT at doses 0.1 and 1 microM attenuated the intracellular Ca(2+) overloading induced by 200 microM NMDA treatment for 24 h in PC12 cells. In summary, we firstly demonstrated that agmatine has an antidepressant-like effect in mice and rats. A classical antidepressant, desipramine, as well as agmatine or monoamines protect the PC12 cells from the lesion induced by NMDA treatment. Agmatine reverses the NMDA-induced intracellular Ca(2+) overloading and the decrease of monoamines (including norepinephrine, epinephrine or dopamine) contents in PC12 cells, indicating that agmatine's antidepressant-like action may be related to its modulation of NMDA receptor activity and/or reversal of the decrease of monoamine contents and Ca(2+) overloading induced by NMDA.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Suicide and suicidal behaviors are complex, heterogeneous phenomena that are thought to result from the interactions among distal factors increasing predisposition and proximal factors acting as precipitants. Epigenetic factors are likely to act both distally and proximally. Aspirational Goal 1 aims to find clear targets for suicide and suicidal behavior intervention through greater understanding of the interplay among the biological, psychological, and social risk and protective factors associated with suicide. This paper discusses Aspirational Goal 1, focusing on the research pathway related to epigenetics, suicide, and suicidal behaviors. Current knowledge on epigenetic factors associated with suicide and suicidal behaviors is reviewed and avenues for future research are discussed. Epigenetic factors are a promising area of further investigation in the understanding of suicide and suicidal behaviors and may hold clues to identifying targets or avenues for intervention.
    American Journal of Preventive Medicine 09/2014; 47(3):S144–S151. DOI:10.1016/j.amepre.2014.06.011 · 4.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depression and chronic pain are significant health problems that seriously impact the quality of life of affected individuals. These diseases that individually are difficult to treat often co-exist, thereby compounding the patient's disability and impairment as well as the challenge of successful treatment. The development of efficacious treatments for these comorbid disorders requires a more comprehensive understanding of their linked associations through common neuromodulators, such as tumor necrosis factor-α (TNFα), and various neurotransmitters, as well as common neuroanatomical pathways and structures, including the hippocampal brain region. This review discusses the interaction between depression and chronic pain, emphasizing the fundamental role of the hippocampus in the development and maintenance of both disorders. The focus of this review addresses the hypothesis that hippocampal expressed TNFα serves as a therapeutic target for management of chronic pain and major depressive disorder (MDD). Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 04/2015; DOI:10.1016/j.neubiorev.2015.03.014 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Agmatine, an endogenous guanidine amine, has been shown to produce antidepressant-like effects in animal studies. This study investigated the effects of the combined administration of agmatine with either conventional monoaminergic antidepressants or the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 in the tail suspension test (TST) in mice. The aim was to evaluate the extent of the antidepressant synergism by examining the ability of a fixed dose of agmatine to shift the antidepressant potency of fluoxetine, imipramine, bupropion and MK-801. A sub-effective dose of agmatine (0.0001mg/kg, p.o.) significantly increased the potency by which fluoxetine, imipramine, bupropion and MK-801 decreased immobility time in the TST by 2-fold (fluoxetine), 10-fold (imipramine and bupropion) and 100-fold (MK-801). Combined with previous evidence indicating a role of monoaminergic systems in the effect of agmatine, the current data suggest that agmatine may modulate monoaminergic neurotransmission and augment the activity of conventional antidepressants. Moreover, this study found that agmatine substantially augmented the antidepressant-like effect of MK-801, reinforcing the notion that this compound modulates NMDA receptor activation. These preclinical data may stimulate future clinical studies testing the effects of augmentation therapy with agmatine for the management of depressive disorders. Copyright © 2014. Published by Elsevier Inc.
    Pharmacology Biochemistry and Behavior 12/2014; 130. DOI:10.1016/j.pbb.2014.12.009 · 2.82 Impact Factor