Internet Contig Explorer (iCE)--a tool for visualizing clone fingerprint maps.

Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
Genome Research (Impact Factor: 13.85). 07/2003; 13(6A):1244-9. DOI: 10.1101/gr.819303
Source: PubMed

ABSTRACT Fingerprinted clone physical maps have proven useful in various applications, supporting both whole-genome and region-specific DNA sequencing as well as gene cloning studies. Fingerprint maps have been generated for several genomes, including those of human, mouse, rat, the nematodes Caenorhabditis elegans and Caenorhabditis briggsae, Arabidopsis thaliana and rice. Fingerprint maps of other genomes, including those of fungi, bacteria, poplar, and the cow, are being generated. The increasing use of fingerprint maps in genomic research has spawned a need in the research community for intuitive computer tools that facilitate viewing of the maps and the underlying fingerprint data. In this report we describe a new Java-based application called iCE (Internet Contig Explorer) that has been designed to provide views of fingerprint maps and associated data. Users can search for and display individual clones, contigs, clone fingerprints, clone insert sizes and markers. Users can also load into the software lists of particular clones of interest and view their fingerprints. iCE is being used at our Genome Centre to offer up to the research community views of the mouse, rat, bovine, C. briggsae, and several fungal genome bacterial artificial chromosome (BAC) fingerprint maps we have either completed or are currently constructing. We are also using iCE as part of the Rat Genome Sequencing Project to manage our provision of rat BAC clones for sequencing at the Human Genome Sequencing Center at the Baylor College of Medicine.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations. J. Exp. Zool. (Mol. Dev. Evol.) 9999B: 1-26, 2014. © 2014 Wiley Periodicals, Inc.
    Journal of Experimental Zoology Part B Molecular and Developmental Evolution 09/2014; 322(6). DOI:10.1002/jez.b.22558 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The perciform suborder Notothenoidei provides a compelling opportunity to study the adaptive radiation of a marine species flock in the cold Southern Ocean surrounding Antarctica. To enable genome-level studies of these psychrophilic fishes, we estimated the sizes of the genomes of 11 Antarctic species and generated high-quality BAC libraries for 2, the notothen Notothenia coriiceps and the icefish Chaenocephalus aceratus. Our results indicate that evolution of phylogenetically derived notothenioid families, [e.g., the icefishes (Channichthyidae)], was accompanied by genome expansion. Species (n=6) of the basal family Nototheniidae had C values that ranged between 0.98 and 1.20 pg, whereas those of the icefishes, the notothenioid crown group, were 1.66-1.83 pg (n=4 species). The BAC libraries VMRC-19 (N. coriiceps) and VMRC-21 (C. aceratus) comprised 12X and 10X coverage of the respective genomes and had average insert sizes of 138 and 168 kb. Greater than 60% of paired BAC ends sampled from each library ( approximately 0.1% of each genome) contained repetitive sequences, and the repetitive element landscapes of the 2 genomes (13.4% of the N. coriiceps genome and 14.5% for C. aceratus) were similar. The representation and depth of coverage of the libraries were verified by identification of multiple Hox gene contigs: six discrete Hox clusters were found in N. coriiceps and at least five Hox clusters were found in C. aceratus. Given the unusual anatomical and physiological adaptations of the notothenioids, the availability of these BAC libraries sets the stage for expanded analysis of the psychrophilic mode of life.
    Journal of Experimental Zoology Part B Molecular and Developmental Evolution 07/2010; 314(5):369-81. DOI:10.1002/jez.b.21341 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complete TCR alpha/delta locus of Atlantic salmon (Salmo salar) has been characterized and annotated. In the 900 kb TCR alpha/delta locus, 292 Valpha/delta segments and 123 Jalpha/delta segments were identified. Of these, 128 Valpha/delta, 113 Jalpha, and a Jdelta segment appeared to be functional as they lacked frame shifts or stop codons. This represents the largest repertoire of Valpha/delta and Jalpha segments of any organism to date. The 128 functional Valpha/delta segments could be grouped into 29 subgroups based upon 70% nucleotide similarity. Expression data confirmed the usage of the diverse repertoire found at the genomic level. At least 99 Valpha, 13 Vdelta 86 Jalpha, 1 Jdelta, and 2 Ddelta segments were used in TCR alpha or delta transcription, and 652 unique genes were identified from a sample of 759 TCRalpha cDNA clones. Cumulatively, the genomic and expression data suggest that the Atlantic salmon T-cell receptor has enormous capacity to recognize a wide diversity of antigens.
    Developmental & Comparative Immunology 02/2008; 32(3):204-12. DOI:10.1016/j.dci.2007.05.002 · 3.71 Impact Factor


1 Download
Available from