MR imaging in human rabies.

Department of Radiology, Ramathibodi Hospital, Bangkok 10400, Thailand.
American Journal of Neuroradiology (Impact Factor: 3.17). 24(6):1102-9.
Source: PubMed

ABSTRACT Whether human rabies of different forms, encephalitic (furious) and paralytic (dumb), share similar MR imaging patterns is unknown. We assessed the diagnostic value of MR imaging in both forms of the disease and compared the clinical and neuroimaging findings.
Three patients with paralytic and two with encephalitic rabies were examined during preserved or deteriorated levels of consciousness. Six MR examinations of the brain, three of the spinal cord, and one of the brachial plexus were performed with a 1.5-T superconducting magnet.
No difference was noted between the MR findings in both clinical forms of human rabies. Nonenhancing, ill-defined, mild hyperintensity changes in the brain stem, hippocampi, hypothalami, deep and subcortical white matter, and deep and cortical gray matter were demonstrated on T2-weighted images in the noncomatose patients with rabies. Enhancement along the brachial plexus of the bitten arm was noted in one patient with encephalitic rabies who at that time had only local neuropathic pain symptoms. Enhancement with gadolinium-based contrast material was seen at the hypothalami, brain stem nuclei, spinal cord gray matter, and intradural cervical nerve roots only when the patients became comatose.
Both forms of human rabies share a similar MR imaging pattern. Such pattern and the lack of enhancement in a noncomatose patient with suspected encephalitis may differentiate rabies from other viral encephalitides.

  • Seminars in roentgenology 01/2014; 49(1):86-98. · 0.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rabies is a major public health problem in Asia and Africa, with nearly 60,000 deaths every year, and represents a substantial economic burden. Neurologists frequently encounter atypical cases, and need to make informed decisions regarding diagnosis and management. No therapy has been shown to unequivocally improve survival in rabies till date. Despite the overwhelmingly fatal nature of this disease, a small number of patients have been reported to survive acute rabies encephalitis with varying degrees of neurological sequelae. This paper presents the eleventh documented case of survival from rabies, which developed after being bitten by a stray dog, albeit with severe neurological residua. Similar to patients in previous reports, this man demonstrated a robust immune response as indicated by peripheral viral clearance and very high serum and cerebrospinal fluid antibody titres. Immunologically-mediated virus clearance therefore appears to be a prerequisite for survival. A detailed review of previously reported survivors, as well as descriptions of the host response and viral clearance in human rabies, current therapy for this disease and future directions in improving the currently dismal prognosis are provided.
    Journal of the Neurological Sciences 01/2014; · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human rabies infection continues to be a significant public health burden globally, and is occasionally imported to high income settings where the Milwaukee Protocol for intensive care management has recently been employed, with limited success in improving survival. Access to molecular diagnostics, pre- and post-mortem, and documentation of pathophysiological responses while using the Milwaukee protocol, can add useful insights for the future of rabies management. A 58-year-old British Asian woman was referred to a regional general hospital in the UK with hydrophobia, anxiety and confusion nine weeks after receiving a dog bite in North West India. Nuchal skin biopsy, saliva, and a skin biopsy from the site of the dog bite wound, taken on the day of admission, all demonstrated the presence of rabies virus RNA. Within 48 hours sequence analysis of viral RNA confirmed the diagnosis and demonstrated that the virus was a strain closely related to canine rabies viruses circulating in South Asia. Her condition deteriorated rapidly with increased agitation and autonomic dysfunction. She was heavily sedated and intubated on the day after admission, treated according to a modified Milwaukee protocol, and remained stable until she developed heart block and profound acidosis and died on the eighth day. Analysis of autopsy samples showed a complete absence of rabies neutralizing antibody in cerebrospinal fluid and serum, and corresponding high levels of virus antigen and nucleic acid in brain and cerebrospinal fluid. Quantitative PCR showed virus was also distributed widely in peripheral tissues despite mild or undetectable histopathological changes. Vagus nerve branches in the heart showed neuritis, a probable Negri body but no demonstrable rabies antigen. Rapid molecular diagnosis and strain typing is helpful in the management of human rabies infection. Post-mortem findings such as vagal neuritis highlight clinically important effects on the cardiovascular system which are typical for the clinical course of rabies in humans. Management guided by the Milwaukee protocol is feasible within well-resourced intensive care units, but its role in improving outcome for canine-derived rabies remains theoretical.
    Virology Journal 01/2014; 11(1):63. · 2.09 Impact Factor


Available from

Similar Publications