Article

Phenotypic and molecular characterization of tetracycline- and erythromycin-resistant strains of Streptococcus pneumoniae.

Department of Microbiology and Biomedical Sciences, University of Ancona Medical School, 60131 Ancona, Italy.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.57). 07/2003; 47(7):2236-41. DOI: 10.1128/AAC.47.7.2236-2241.2003
Source: PubMed

ABSTRACT Sixty-five clinical isolates of Streptococcus pneumoniae, all collected in Italy between 1999 and 2002 and resistant to both tetracycline (MIC, >or=8 microg/ml) and erythromycin (MIC, >or=1 microg/ml), were investigated. Of these strains, 11% were penicillin resistant and 23% were penicillin intermediate. With the use of the erythromycin-clindamycin-rokitamycin triple-disk test, 14 strains were assigned to the constitutive (cMLS) phenotype of macrolide resistance, 44 were assigned to the partially inducible (iMcLS) phenotype, 1 was assigned to the inducible (iMLS) phenotype, and 6 were assigned to the efflux-mediated (M) phenotype. In PCR assays, 64 of the 65 strains were positive for the tetracycline resistance gene tet(M), the exception being the one M isolate susceptible to kanamycin, whereas tet(K), tet(L), and tet(O) were never found. All cMLS, iMcLS, and iMLS isolates had the erythromycin resistance gene erm(B), and all M phenotype isolates had the mef(A) or mef(E) gene. No isolate had the erm(A) gene. The int-Tn gene, encoding the integrase of the Tn916-Tn1545 family of conjugative transposons, was detected in 62 of the 65 test strains. Typing assays showed the strains to be to a great extent unrelated. Of 16 different serotypes detected, the most numerous were 23F (n = 13), 19A (n = 10), 19F (n = 9), 6B (n = 8), and 14 (n = 6). Of 49 different pulsed-field gel electrophoresis types identified, the majority (n = 39) were represented by a single isolate, while the most numerous type included five isolates. By high-resolution restriction analysis of PCR amplicons with four endonucleases, the tet(M) loci from the 64 tet(M)-positive pneumococci were classified into seven distinct restriction types. Overall, a Tn1545-like transposon could reasonably account for tetracycline and erythromycin resistance in the vast majority of the pneumococci of cMLS, iMcLS, and iMLS phenotypes, whereas a Tn916-like transposon could account for tetracycline resistance in most M phenotype strains.

0 Bookmarks
 · 
38 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonserotypeable pneumococci (NSP) are commonly carried by Australian Indigenous children in remote communities. The purpose of this study was to characterize carriage isolates of NSP from Indigenous children vaccinated with the seven-valent pneumococcal conjugate vaccine (PCV7) and to use these data to guide decisions on reporting of NSP. A total of 182 NSP were characterized by BOX typing, antibiogram analysis, and multilocus sequence typing (MLST) of common BOX types. NSP positive for the wzg capsule gene were analyzed by a multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB-H) targeting capsule genes to determine the serotype. Among 182 NSP, 49 BOX types were identified. MLST of 10 representative isolates found 7 STs, including ST448 (which accounted for 11% of NSP). Non-penicillin susceptibility was evident in 51% of the isolates. Pneumococcal wzg sequences were detected in only 23 (13%) NSP, including 10 that contained an approximately 1.2-kb insert in the region. mPCR/RLB-H identified serotype 14 wzy sequences in all 10 NSP, and 1 also contained a serotype 3-specific wze sequence. Among the remaining 13 wzg-positive NSP, few belonged to the serotypes represented in PCV7. It appears that most NSP identified in Australian Indigenous children are from a true nonencapsulated lineage. Few NSP represented serotypes in PCV7 that suppress capsular expression. High rates of carriage and penicillin resistance and the occasional presence of capsule genes suggest a role for NSP in the maintenance and survival of capsulated pneumococci. To avoid the inflation of pneumococcal carriage and antibiotic resistance rates, in clinical trials, we recommend separate reporting of rates of capsular strains and NSP and the exclusion of data for NSP from primary analyses.
    Journal of clinical microbiology 03/2010; 48(3):831-5. · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibiotic-resistant Gram-positive bacteria are responsible for morbidity and mortality in healthcare environments. Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pneumoniae can all exhibit clinically relevant multidrug resistance phenotypes due to acquired resistance genes on mobile genetic elements. It is possible that clinically relevant multidrug-resistant Clostridium difficile strains will appear in the future, as the organism is adept at acquiring mobile genetic elements (plasmids and transposons). Conjugative transposons of the Tn916/Tn1545 family, which carry major antibiotic resistance determinants, are transmissible between these different bacteria by a conjugative mechanism during which the elements are excised by a staggered cut from donor cells, converted to a circular form, transferred by cell-cell contact and inserted into recipient cells by a site-specific recombinase. The ability of these conjugative transposons to acquire additional, clinically relevant antibiotic resistance genes importantly contributes to the emergence of multidrug resistance.
    FEMS microbiology reviews 06/2011; 35(5):856-71. · 10.96 Impact Factor
  • Source
    01/2010;

Full-text

View
0 Downloads
Available from