Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model.

Department of PharmacologyEmory University, Atlanta, GA 30322, USA.
Experimental Neurology (Impact Factor: 4.62). 08/2003; 182(1):21-34. DOI: 10.1016/S0014-4886(03)00086-4
Source: PubMed

ABSTRACT The rodent pilocarpine model of epilepsy exhibits hippocampal sclerosis and spontaneous seizures and thus resembles human temporal lobe epilepsy. Use of the many available mouse mutants to study this epilepsy model would benefit from a detailed neuropathology study. To identify new features of epileptogenesis, we characterized glial and neuronal pathologies after pilocarpine-induced status epilepticus (SE) in CF1 and C57BL/6 mice focusing on the hippocampus. All CF1 mice showed spontaneous seizures by 17-27 days after SE. By 6 h there was virtually complete loss of hilar neurons, but the extent of pyramidal cell death varied considerably among mice. In the mossy fiber pathway, neuropeptide Y (NPY) was persistently upregulated beginning 1 day after SE; NPY immunoreactivity in the supragranular layer after 31 days indicated mossy fiber sprouting. beta2 microglobulin-positive activated microglia, normally absent in brains without SE, became abundant over 3-31 days in regions of neuronal loss, including the hippocampus and the amygdala. Astrogliosis developed after 10 days in damaged areas. Amyloid precursor protein immunoreactivity in the thalamus at 10 days suggested delayed axonal degeneration. The mortality after pilocarpine injection was very high in C57BL/6 mice from Jackson Laboratories but not those from Charles River, suggesting that mutant mice in the C57BL/6(JAX) strain will be difficult to study in the pilocarpine model, although their neuropathology was similar to CF1 mice. Major neuropathological changes not previously studied in the rodent pilocarpine model include widespread microglial activation, delayed thalamic axonal death, and persistent NPY upregulation in mossy fibers, together revealing extensive and persistent glial as well as neuronal pathology.


Available from: Karin Borges, Nov 20, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The N-methyl-D-aspartate (NMDA) receptor plays an important role in the pathophysiology of several neurological diseases, including epilepsy. The present study investigated the effect of NMDA receptor NR2B subunits on pentylenetetrazole (PTZ)-kindling-induced pathological and biochemical events in mice. Our results showed that PTZ-kindling up-regulates the expression of NMDA receptor NR2B subunits in the hippocampus and that kindled mice were characterized by significant astrocytosis and neuron loss in the hippocampus. Oxidative stress, including excessive malondialdehyde (MDA) production and decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were detected in the hippocampus after the mice were fully kindled. Additionally, expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was found to be up-regulated in PTZ-kindled mice. However, selectively blocking NMDA receptor NR2B subunits by ifenprodil significantly suppressed PTZ-kindling-induced hippocampal astrocytosis, oxidative stress and neuron loss. Furthermore, blocking NMDA receptor NR2B subunits also abolished PTZ-kindling-induced BDNF expression. These results indicate that NMDA receptor NR2B subunits contribute to epilepsy-associated pathological and biochemical events, including hippocampal astrocytosis, oxidative stress and neuron loss, and these events might be correlated with up-regulation of BDNF expression. Copyright © 2015 Elsevier Inc. All rights reserved.
    Brain research bulletin 04/2015; 114. DOI:10.1016/j.brainresbull.2015.04.002 · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Axonopathy is a common and early phase in neurodegenerative and traumatic CNS diseases. Recent work suggests that amyloid β (Aβ) produced from amyloid precursor protein (APP) may be a critical downstream mediator of CNS axonopathy in CNS diseases, particularly those associated with hypoxia. We critically tested this hypothesis in an adult retinal explant system that preserves the three-dimensional organization of the retina while permitting direct imaging of two cardinal features of early-stage axonopathy: axonal structural integrity and axonal transport capacity. Using this system, we found via pharmacological inhibition and genetic deletion of APP that production of Aβ is a necessary step in structural compromise of retinal ganglion cell (RGC) axons induced by the disease-relevant stressor hypoxia. However, identical blockade of Aβ production was not sufficient to protect axons from associated hypoxia-induced reduction in axonal transport. Thus, Aβ mediates distinct facets of hypoxia-induced axonopathy and may represent a functionally selective pharmacological target for therapies directed against early-stage axonopathy in CNS diseases. Copyright © 2015. Published by Elsevier Inc.
    Neurobiology of Disease 03/2015; 77. DOI:10.1016/j.nbd.2015.02.027 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose : Hippocampal glucose hypometabolism has been implicated in the pathogenesis of temporal lobe epilepsy (TLE). However, the underlying pathophysiological basis for this hypometabolism remains elusive. The aim of this study was to investigate the relationship between hippocampal hypometabolism and the histological changes seen in rats after systemic pilocarpine treatment. Methods : (18)F-fluorodeoxyglucose (FDG) small-animal positron emission tomography (microPET) was performed on day zero (untreated), day seven (latent) and day sixty (chronic phase) after the initial status epilepticus. The microPET imaging data were correlated with the immunoreactivity of neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP) in the hippocampus at each time point. Results : (18)F-FDG-microPET images showed the hippocampus presented with persistent hypometabolism during epileptogenesis and partly recovered in the chronic phase. Hippocampal glucose uptake defects correlate with NeuN immunoreactivity in the latent phase and GFAP immunoreactivity in the chronic phase. Conclusions : Severe glucose hypometabolism in the hippocampus during the latent phase correlates with neuronal cell loss. The partial recovery of hippocampal glucose uptake in the chronic phase may be due to astrogliosis.
    International journal of medical sciences 01/2015; 12(3):288-94. DOI:10.7150/ijms.10527 · 1.55 Impact Factor