MRC British Genetics of Hypertension Study. Genome-wide mapping of human loci for essential hypertension

University of Cambridge, Cambridge, England, United Kingdom
The Lancet (Impact Factor: 45.22). 07/2003; 361(9375):2118-23. DOI: 10.1016/S0140-6736(03)13722-1
Source: PubMed


Blood pressure may contribute to 50% of the global cardiovascular disease epidemic. By understanding the genes predisposing to common disorders such as human essential hypertension we may gain insights into novel pathophysiological mechanisms and potential therapeutic targets. In the Medical Research Council BRItish Genetics of HyperTension (BRIGHT) study, we aim to identify these genetic factors by scanning the human genome for susceptibility genes for essential hypertension. We describe the results of a genome scan for hypertension in a large white European population.
We phenotyped 2010 affected sibling pairs drawn from 1599 severely hypertensive families, and completed a 10 centimorgan genome-wide scan. After rigorous quality control, we analysed the genotypic data by non-parametric linkage, which tests whether genes are shared in excess among the affected sibling pairs. Lod scores, calculated at regular points along each chromosome, were used to assess the support for linkage.
Linkage analysis identified a principle locus on chromosome 6q, with a lod score of 3.21 that attained genome-wide significance (p=0.042). The inclusion of three further loci with lod scores higher than 1.57 (2q, 5q, and 9q) also show genome-wide significance (p=0.017) when assessed under a locus-counting analysis.
These findings imply that human essential hypertension has an oligogenic element (a few genes may be involved in determination of the trait) possibly superimposed on more minor genetic effects, and that several genes may be tractable to a positional cloning strategy.

1 Follower
5 Reads
  • Source
    • "Two cross-sectional studies included individuals without CHD but with a diagnosis of T2DM (based on individuals with a fasting glucose level ≥7.0 mmol/L or non-fasting glucose ≥11.1 mmol/L, or self-reported use of anti-diabetic medication): the UCL Diabetes and Cardiovascular Disease Study (UDACS)29 and the Ealing Diabetes Study (EDS)30 (Supplementary material online, Methods 1 and Table S1). One cross-sectional study, the MRC-BHF British Genetics of Hypertension (BRIGHT) study31 included individuals without CHD but with high blood pressure (BP) (Table 1). "
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the associations of emergent genome-wide-association study-derived coronary heart disease (CHD)-associated single nucleotide polymorphisms (SNPs) with established and emerging risk factors, and the association of genome-wide-association study-derived lipid-associated SNPs with other risk factors and CHD events. Using two case-control studies, three cross-sectional, and seven prospective studies with up to 25 000 individuals and 5794 CHD events we evaluated associations of 34 genome-wide-association study-identified SNPs with CHD risk and 16 CHD-associated risk factors or biomarkers. The Ch9p21 SNPs rs1333049 (OR 1.17; 95% confidence limits 1.11-1.24) and rs10757274 (OR 1.17; 1.09-1.26), MIA3 rs17465637 (OR 1.10; 1.04-1.15), Ch2q36 rs2943634 (OR 1.08; 1.03-1.14), APC rs383830 (OR 1.10; 1.02, 1.18), MTHFD1L rs6922269 (OR 1.10; 1.03, 1.16), CXCL12 rs501120 (OR 1.12; 1.04, 1.20), and SMAD3 rs17228212 (OR 1.11; 1.05, 1.17) were all associated with CHD risk, but not with the CHD biomarkers and risk factors measured. Among the 20 blood lipid-related SNPs, LPL rs17411031 was associated with a lower risk of CHD (OR 0.91; 0.84-0.97), an increase in Apolipoprotein AI and HDL-cholesterol, and reduced triglycerides. SORT1 rs599839 was associated with CHD risk (OR 1.20; 1.15-1.26) as well as total- and LDL-cholesterol, and apolipoprotein B. ANGPTL3 rs12042319 was associated with CHD risk (OR 1.11; 1.03, 1.19), total- and LDL-cholesterol, triglycerides, and interleukin-6. Several SNPs predicting CHD events appear to involve pathways not currently indexed by the established or emerging risk factors; others involved changes in blood lipids including triglycerides or HDL-cholesterol as well as LDL-cholesterol. The overlapping association of SNPs with multiple risk factors and biomarkers supports the existence of shared points of regulation for these phenotypes.
    European Heart Journal 07/2011; 33(3):393-407. DOI:10.1093/eurheartj/ehr225 · 15.20 Impact Factor
  • Source
    • "The “omics” technique offers a high-throughput screening strategy to explore the root causes of hypertension. The genome-wide mapping of human loci has linked many candidate genes to essential hypertension6, 7, although none of them has been widely confirmed in different population groups. Recently, the metabolic profiling of hypertension has drawn the attention of researchers8, 9, 10, 11, 12, 13, 14. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the regulatory effects of total ginsenosides and the conventional antihypertensive agents (captopril, amlodipine, terazosin and hydrochlorothiazide) on the blood pressure and perturbed metabolism in spontaneously hypertensive rats (SHRs) and to analyze the cause-effect relationships between high blood pressure and the metabolic disorders of hypertension. SHRs were administrated with total ginsenosides or the antihypertensive agents for eight weeks. Systolic blood pressure (SP) was measured every week and low-molecular-weight compounds in blood plasma were quantitatively analyzed using a nontargeted high-throughput metabolomic tool: gas chromatography/time of flight mass spectrometry (GC/TOFMS) . The metabolic patterns were evaluated using principal components analysis and potential markers of hypertension were identified. Total ginsenosides and the antihypertensive agents differentially regulated SP and the metabolic pattern in SHRs. Total ginsenosides caused a progressive and prolonged reduction of SP and markedly normalized the perturbed metabolism with 14 of 27 (51.8%) markers of hypertension which were regulated toward normal. Total ginsenosides also reduced free fatty acids' level toward normal levels. In contrast, captopril, amlodipine and terazosin efficiently depressed SP, but had little effect on metabolic perturbation with only 8 (29.6%), 4 (14.8%), and 4 (14.8%) markers, respectively, which were regulated. The metabolic changes persisted when the blood pressure was lowered by the conventional antihypertensive agents, suggesting that hypertension may not be the cause of the metabolic perturbation in SHRs.
    Acta Pharmacologica Sinica 08/2010; 31(8):930-7. DOI:10.1038/aps.2010.86 · 2.91 Impact Factor
  • Source
    • "All these factors hinder the replication of results and decrease the likelihood of success of linkage studies in general. The Medical Research Council funded British Genetics of Hypertension (MRC BRIGHT) study, [31] demonstrated a successful attempt at reducing heterogeneity by using antihypertensive drug response to partition different pathways of hypertension [32]. In the BRIGHT population, hypertensive sib-pairs who were non-responsive to ACE inhibitors, ARBs or beta-blockers showed significant linkage on chromosome 2p (LOD = 4.84 at 90.68 Kosambi cM). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension is a major public health problem, but measures to reduce blood pressure and thus cardiovascular risk are complicated by the high prevalence of treatment resistance, despite the availability of multiple drugs. Drug side-effects contribute considerably to suboptimal blood pressure control. Clinicians must often rely on empirical methods to match patients with effective drug treatment. Hypertension pharmacogenomics seeks to find genetic predictors of response to drugs that lower blood pressure and to translate this knowledge into clinical practice. In this review we summarise the current status of hypertension pharmacogenetics from monogenic hypertension to essential hypertension and discuss the issues that need to be considered in a hypertension pharmacogenomic study.
    Pharmaceuticals 06/2010; 3(6):1779-1791. DOI:10.3390/ph3061779
Show more