Generation of Tumor-Infiltrating Lymphocyte Cultures for Use in Adoptive Transfer Therapy for Melanoma Patients

Surgery Branch, National Cancer Institute, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892-1502, USA.
Journla of Immunotherapy (Impact Factor: 4.01). 07/2003; 26(4):332-42. DOI: 10.1097/00002371-200307000-00005
Source: PubMed

ABSTRACT The generation of T lymphocytes with specific reactivity against tumor antigens is a prerequisite for effective adoptive transfer therapies. Melanoma-specific lymphocyte cultures can be established from tumor infiltrating lymphocytes (TILs) by in vitro culture in high levels of IL-2. We have optimized methods for generating melanoma-reactive TIL cultures from small resected tumor specimens. We report a retrospective analysis of 860 attempted TIL cultures from 90 sequential melanoma biopsy specimens from 62 HLA-A2+ patients. Multiple independent TIL derived from a single tumor often exhibited substantial functional and phenotypic variation. Tumor specific activity was detected in TIL from 29 (81%) of 36 patients screened. TIL cultures selected for high activity were generally capable of large numerical expansion using a single round of a rapid expansion protocol. Limited clonal T-cell populations in an oligoclonal TIL culture could confer specific tumor recognition in these highly selected, highly expanded TIL cultures. These methods were efficient at generating TILs suitable for adoptive transfer therapy.

40 Reads
  • Source
    • "This is clear evidence that TILs effectively track to the CNS (54). Technical issues with producing tumor-specific T cells from brain tumor excision samples currently present a major barrier to conducting clinical trials using TILs in glioma – the minority of biopsy specimens yield satisfactory T cell populations, and the process is labor and time intensive (55). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly "self," it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts.
    Frontiers in Oncology 11/2013; 3:275. DOI:10.3389/fonc.2013.00275
  • Source
    • "A day following lymphodepletion , TILs were infused into patients and high-dose IL-2 therapy was started. Protocols employed to generate TILs are described elsewhere (Dudley et al, 2003; Tran et al, 2008; Dudley et al, "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Adoptive therapy with tumour-infiltrating lymphocytes (TILs) induces durable complete responses (CR) in ∼20% of patients with metastatic melanoma. The recruitment of T cells through CXCR3/CCR5 chemokine ligands is critical for immune-mediated rejection. We postulated that polymorphisms and/or expression of CXCR3/CCR5 in TILs and the expression of their ligands in tumour influence the migration of TILs to tumours and tumour regression. Methods: Tumour-infiltrating lymphocytes from 142 metastatic melanoma patients enrolled in adoptive therapy trials were genotyped for CXCR3 rs2280964 and CCR5-Δ32 deletion, which encodes a protein not expressed on the cell surface. Expression of CXCR3/CCR5 in TILs and CXCR3/CCR5 and ligand genes in 113 available parental tumours was also assessed. Tumour-infiltrating lymphocyte data were validated by flow cytometry (N=50). Results: The full gene expression/polymorphism model, which includes CXCR3 and CCR5 expression data, CCR5-Δ32 polymorphism data and their interaction, was significantly associated with both CR and overall response (OR; P=0.0009, and P=0.007, respectively). More in detail, the predicted underexpression of both CXCR3 and CCR5 according to gene expression and polymorphism data (protein prediction model, PPM) was associated with response to therapy (odds ratio=6.16 and 2.32, for CR and OR, respectively). Flow cytometric analysis confirmed the PPM. Coordinate upregulation of CXCL9, CXCL10, CXCL11, and CCL5 in pretreatment tumour biopsies was associated with OR. Conclusion: Coordinate overexpression of CXCL9, CXCL10, CXCL11, and CCL5 in pretreatment tumours was associated with responsiveness to treatment. Conversely, CCR5-Δ32 polymorphism and CXCR3/CCR5 underexpression influence downregulation of the corresponding receptors in TILs and were associated with likelihood and degree of response.
    British Journal of Cancer 10/2013; 109(9). DOI:10.1038/bjc.2013.557 · 4.84 Impact Factor
  • Source
    • "Nevertheless, they have initiated an intense debate as to whether TIL were harbingers of good or poor prognosis. As Rosenberg's group at the NCI and other investigators were successful in expanding TIL for adoptive therapy, it appeared that if these cells were functionally deficient in situ, they clearly re-gained the ability to eliminate tumor cells upon culture in the presence of IL-2 (Dudley et al., 2003). Slowly, the realization that the host-tumor interactions are critical for determining the fate of immune cells found in the tumor microenvironment prompted the re-assessment of the role TIL play in cancer progression. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent technical improvements in evaluations of immune cells in situ and immune monitoring of patients with cancer have provided a wealth of new data confirming that immune cells play a key role in human cancer progression. This, in turn, has revived the expectation that immune endpoints might serve as reliable biomarkers of outcome or response to therapy in cancer. The recent successes in linking the T-cell signature in human colorectal carcinoma (CRC) with prognosis have provided a strong motive for searching for additional immune biomarkers that could serve as intermediate endpoints of response to therapy and outcome in human cancers. A number of potentially promising immune biomarkers have emerged, but most remain to be validated. Among them, the B-cell signature, as exemplified by expression of the immunoglobulin G kappa chain (IGKC) in tumor-infiltrating lymphocytes (TIL), has been validated as a biomarker of response to adjuvant therapy and better survival in patients with breast carcinoma and several other types of human solid tumors. Additional immune endpoints are being currently tested as potentially promising biomarkers in cancer. In view of currently growing use of immune cancer therapies, the search for immune biomarkers of prognosis are critically important for identifying patients who would benefit the most from adjuvant immunotherapy.
    Frontiers in Oncology 05/2013; 3:107. DOI:10.3389/fonc.2013.00107
Show more


40 Reads
Available from