Identification and characterization of Fugu orthologues of mammalian interleukin-12 subunits.

Immunology Section, National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, 519-0423 Mie, Japan.
Immunogenetics (Impact Factor: 2.89). 09/2003; 55(5):296-306. DOI: 10.1007/s00251-003-0582-9
Source: PubMed

ABSTRACT We have isolated and characterized cDNAs and genes for pufferfish, Fugu rubripes, (Fugu) orthologues of mammalian interleukin (IL)-12 subunits (IL-12 p35 and IL-12 p40). The deduced amino acid sequences of the Fugu IL-12 subunits showed homology with mammalian IL-12 subunits (p35: 50.4-58.0% similarity; p40: 51.2-55.4% similarity). Phylogenetic analysis confirmed that Fugu IL-12 p35 and p40 genes cluster with their mammalian counterpart lineages. The genomic organization of each of the Fugu IL-12 subunit genes is similar to that of the corresponding mouse IL-12 subunit genes, although the Fugu genes are very compact due to small intron size. Comparative genomic analysis showed conserved syntenies within the IL-12 p35 and p40 regions between Fugu and human, indicating that the Fugu IL-12 p35 and p40 genes are orthologues for mammalian IL-12 p35 and p40 encoding genes, respectively. Expression of IL-12 p35 mRNA was observed in lymphoid tissues and several non-lymphoid tissues, while expression of IL-12 p40 mRNA was constitutive and nearly ubiquitous. In the spleen and head kidney, expression of IL-12 p35 was induced by polyriboinosinic polyribocytidylic acid [poly(I:C)] and not by lipopolysaccharide (LPS), while expression of IL-12 p40 was constitutive and unresponsive to both poly(I:C) and LPS. These results indicate that IL-12 levels are regulated by production of IL-12 p35 mRNA and suggest that IL-12 in fish may be involved in antiviral defense. This is the first report of the identification and characterization of IL-12 subunit cDNAs and genes in a non-mammalian vertebrate.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-12 is a heterodimeric cytokine composed of an α-chain (p35) and a β-chain (p40). Primarily produced by APCs, IL-12 induces IFN-γ production in T, B and NK cells. IL-12 drives Th1-cell differentiation and IFN-γ secretion to promote cell-mediated immunity, which is essential in the defence against intracellular pathogens. The importance of IL-12 in Th1 responses is echoed by its targeted suppression by intracellular pathogens evading cell-mediated immunity. IL-12 subunits have been identified recently in fish, although reported bioactivities are limited to higher vertebrates. Here, we report the cloning of a p35 gene and two divergent p40 genes (p40b and p40c), capable of producing two functional IL-12 isoforms (p35/p40b and p35/p40c) in rainbow trout. Trout IL-12 isoforms possess distinct bioactivities with respect to the induction of IFN-γ, IL-10 and p40c expression. Trout IL-12 isoforms were differentially expressed and modulated in vivo, exhibiting specific gene expression profiles in bacterial, viral and parasitic infection models, and in vitro in stimulated macrophage and leucocyte cultures. These data imply that alternative or additional pathogen-specific Th-like cell populations may exist in fish. This study will facilitate a broader understanding of the evolutionary processes driving host-pathogen interactions and Th1-like immune responses in lower vertebrates. This article is protected by copyright. All rights reserved.
    European Journal of Immunology 01/2014; · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fish gill, as one of the mucosal barriers, plays an important role in mucosal immune response. The fish swimbladder functions for regulating buoyancy. The fish swimbladder has long been postulated as a homologous organ of the tetrapod lung, but the molecular evidence is scarce. In order to provide new information that is complementary to gill immune genes, initiate new research directions concerning the genetic basis of the gill immune response and understand the molecular function of swimbladder as well as its relationship with lungs, transcriptome analysis of the fugu Takifugu rubripes gill and swimbladder was carried out by RNA-Seq. Approximately 55,061,524 and 44,736,850 raw sequence reads from gill and swimbladder were generated, respectively. Gene ontology (GO) and KEGG pathway analysis revealed diverse biological functions and processes. Transcriptome comparison between gill and swimbladder resulted in 3,790 differentially expressed genes, of which 1,520 were up-regulated in the swimbladder while 2,270 were down-regulated. In addition, 406 up regulated isoforms and 296 down regulated isoforms were observed in swimbladder in comparison to gill. By the gene enrichment analysis, the three immune-related pathways and 32 immune-related genes in gill were identified. In swimbladder, five pathways including 43 swimbladder-enriched genes were identified. This work should set the foundation for studying immune-related genes for the mucosal immunity and provide genomic resources to study the relatedness of the fish swimbladder and mammalian lung.
    PLoS ONE 01/2014; 9(1):e85505. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-12 family cytokines are heterodimers of an α-chain (p19, p28 and p35) and a β-chain (p40 and Ebi3), present as IL-12 (p35/p40), IL-23 (p19/p40), IL-27 (p28/Ebi3) and IL-35 (p35/Ebi3), and play key roles in immune responses in mammals. One p35 and up to three p40 genes have been cloned in some fish species. The identification of three active p35 genes, along with three p40 paralogues in salmonids in the current study further expands the repertoire of IL-12, IL-23 and IL-35 molecules in these species. The multiple p35 genes in teleost fish appear to have arisen via whole genome duplications. The different paralogues of the subunits are divergent, and differentially expressed and modulated by PAMPs and proinflammatory cytokines, hinting that distinct isoforms could be produced in response to infection. Therefore, the expanded IL-12 cytokine family may provide an unprecedented level of regulation to fine tune the immune response in fish.
    Developmental and comparative immunology 04/2014; · 3.29 Impact Factor