The Saccharomyces cerevisiae calponin/transgelin homolog Scp1 functions with fimbrin to regulate stability and organization of the actin cytoskeleton.

Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
Molecular Biology of the Cell (Impact Factor: 4.55). 08/2003; 14(7):2617-29. DOI: 10.1091/mbc.E03-01-0028
Source: PubMed

ABSTRACT Calponins and transgelins are members of a conserved family of actin-associated proteins widely expressed from yeast to humans. Although a role for calponin in muscle cells has been described, the biochemical activities and in vivo functions of nonmuscle calponins and transgelins are largely unknown. Herein, we have used genetic and biochemical analyses to characterize the budding yeast member of this family, Scp1, which most closely resembles transgelin and contains one calponin homology (CH) domain. We show that Scp1 is a novel component of yeast cortical actin patches and shares in vivo functions and biochemical activities with Sac6/fimbrin, the one other actin patch component that contains CH domains. Purified Scp1 binds directly to filamentous actin, cross-links actin filaments, and stabilizes filaments against disassembly. Sequences in Scp1 sufficient for actin binding and cross-linking reside in its carboxy terminus, outside the CH domain. Overexpression of SCP1 suppresses sac6Delta defects, and deletion of SCP1 enhances sac6Delta defects. Together, these data show that Scp1 and Sac6/fimbrin cooperate to stabilize and organize the yeast actin cytoskeleton.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome wide functional analysis, sophisticated real time imaging and ultrastructural studies in concert with biochemical analysis has made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. This article is protected by copyright. All rights reserved.
    FEMS microbiology reviews 01/2014; 38(2). DOI:10.1111/1574-6976.12064 · 13.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. Copyright © 2015 by the Genetics Society of America.
    Genetics 02/2015; 199(2):315-358. DOI:10.1534/genetics.112.145540 · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transgelin is an abundant protein of smooth muscle cells, where its role has been primarily studied. As a protein affecting dynamics of the actin cytoskeleton via stabilization of actin filaments, transgelin is both directly and indirectly involved in many cancer-related processes such as migration, proliferation, differentiation or apoptosis. Transgelin was previously reviewed as a tumor suppressor; however, recent data based on a number of proteomics studies indicate its pro-tumorigenic role, for example, in colorectal or hepatocellular cancer. We summarize these contradictory observations in both clinical and functional proteomics projects and analyze the role of transgelin in tumors in detail. Generally, the expression and biological role of transgelin seem to differ among various types of tumor cells and stroma, and possibly change during tumor progression. We also overview the recent data on transgelin-2, a sequence homolog of transgelin, whose role in the tumor development might be contradictory to the role of transgelin.
    Expert Review of Proteomics 01/2014; 11(2). DOI:10.1586/14789450.2014.860358 · 3.54 Impact Factor

Full-text (2 Sources)

Available from
Jul 2, 2014