Analysis of large structural changes of the factor VIII gene, involving intron 1 and 22, in severe hemophilia A.

Institute of Hematology and Immunology, National Medical Center, Diószegi út 64, Budapest H-1113, Hungary.
Haematologica (Impact Factor: 5.94). 08/2003; 88(7):778-84.
Source: PubMed

ABSTRACT Hemophilia A (HA), the deficiency of coagulation factor VIII (FVIII), is the most common, sex-linked inherited bleeding disorder. The disease is caused by FVIII gene intron 22 inversion in approximately 50% of the patients, and by intron 1 inversion in 5% of the patients with severe HA. Both inversions occur as a result of intrachromosomal recombination between homologous regions, in intron 1 or 22, and their extragenic copy located telomeric to the FVIII gene. The goal of the present study was to analyze the presence of large structural changes in the FVIII gene in patients with severe hemophilia A.
We studied 104 unrelated, severe HA-patients or obligate carriers for the presence of intron 22 and intron 1 inversions by Southern blotting, long-distance polymerase chain reaction (PCR), and simple PCR.
We found altered intron 22 restriction profiles by Southern analyses in 58 cases: 43 type 1, 11 type 2 inversions and 4 unusual patterns. Upon further examination of the last 4 cases, large deletions involving intron 22 were demonstrated in two cases. In the remaining two patients extra homologous regions were detected by Southern analysis, and long-distance PCR showed the presence of unaltered intra- and extragenic copies together with one inversion-affected copy, suggesting that an additional intronic fragment participated in the inversion process and was inserted in the genome. During screening for intron 1 inversion among 43 patients, who were intron 22 inversion negative, we identified only wild type individuals.
The relatively large proportion of unusual patterns further supports the observation that the structure of FVIII intron 22 represents a hot spot for large gene rearrangements with various mechanisms, while intron 1 inversion seems to be not common in Hungary.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The intron 22 inversion found in up to 50% of severe hemophilia A patients results from a recombination between three intron 22 homologous copies (int22h). This study evaluated the implication of these copies in the formation of extended duplications comprising exons 1-22 of the factor 8 (F8) gene and their association with hemophilia and mental retardation. Two hemophilic patients with moderate and severe phenotypes and a third nonhemophilic patient with developmental delay were studied. All exhibited a duplication of F8 gene exons 1-22 identified by multiplex ligation-dependent probe amplification along with abnormal patterns on Southern blotting and unexpected long-range PCR amplification. Breakpoint analysis using array comparative genomic hybridization was performed to delimit the extent of these rearrangements. These duplications were bounded on one side by the F8 intragenic int22h-1 repeat and on the other side by extragenic int22h-2 or int22h-3 copies. However, the simultaneous identification of a second duplication containing F8 gene exons 2-14 for the moderate patient and the classical intron 22 inversion for the severe patient are considered in this study as the genetic causal defects of hemophilia. This study shows that the well-known int22h copies are involved in extended duplications comprising F8 gene exons 1-22. These specific duplications are probably not responsible for hemophilia and intellectual disability, but should be carefully considered in genetic counseling, while continuing to investigate the causal mutation of hemophilia.European Journal of Human Genetics advance online publication, 9 January 2013; doi:10.1038/ejhg.2012.275.
    European journal of human genetics: EJHG 01/2013; · 3.56 Impact Factor
  • Annals of Hematology 07/2011; 91(4):633-6. · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: Hemophilia A is an X linked recessive hemorrhagic disorder caused by mutations in the F8 gene that lead to qualitative and/or quantitative deficiencies of coagulation factor VIII (FVIII). Molecular diagnosis of hemophilia A is challenging because of the high number of different causative mutations that are distributed throughout the large F8 gene. Molecular studies of these mutations are essential in order to reinforce our understanding of their pathogenic effect responsible for the disorder. Aim In this study we have performed molecular analysis of 28 Tunisian hemophilia A patients and analyzed the F8 mutation spectrum. METHODS: We screened the presence of intron 22 and intron 1 inversion in severe hemophilia A patients by southern blotting and polymerase chain reaction (PCR). Detection of point mutations was performed by dHPLC/sequencing of the coding F8 gene region. We predict the potential functional consequences of novel missense mutations with bioinformatics approaches and mapping of their spatial positions on the available FVIII 3D structure. RESULTS: We identified 23 different mutations in 28 Tunisian hemophilia A patients belonging to 22 unrelated families. The identified mutations included 5 intron 22 inversions, 7 insertions, 4 deletions and 7 substitutions. In total 18 point mutations were identified, of which 9 are located in exon 14, the most mutated exonic sequence in the F8 gene. Among the 23 mutations, 8 are novel and not deposited in the HAMSTeRS database nor described in recently published articles. CONCLUSION: The mutation spectrum of Tunisian hemophilia A patients is heterogeneous with the presence of some characteristic features. Virtual slides The virtual slide(s) for this article can be found here:
    Diagnostic Pathology 08/2012; 7(1):93. · 1.85 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014