Scavenging of superoxide generated in photosystem I by plastoquinol and other prenyllipids in thylakoid membranes.

Department of Plant Physiology and Biochemistry, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
Biochemistry (Impact Factor: 3.38). 08/2003; 42(28):8501-5. DOI: 10.1021/bi034036q
Source: PubMed

ABSTRACT We have examined scavenging of a superoxide by various prenyllipids occurring in thylakoid membranes, such as plastoquinone-9, alpha-tocopherolquinone, their reduced forms, and alpha-tocopherol, measuring oxygen uptake in hexane-extracted and untreated spinach thylakoids with a fast oxygen electrode under flash-light illumination. The obtained results demonstrated that all the investigated prenyllipids showed the superoxide scavenging properties, and plastoquinol-9 was the most active in this respect. Plastoquinol-9 formed in thylakoids as a result of enzymatic reduction of plastoquinone-9 by ferredoxin-plastoquinone reductase was even more active than the externally added plastoquinol-9 in the investigated reaction. Scavenging of superoxide by plastoquinol-9 and other prenyllipids could be important for protecting membrane components against the toxic action of superoxide. Moreover, our results indicate that vitamin K(1) is probably the most active redox component of photosystem I in the generation of superoxide within thylakoid membranes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) resulting from oxygen reduction, superoxide anion radical O2(*-) and hydrogen peroxide H(2)O(2) are very significant in the cell metabolism of aerobic organisms. They can be destructive and lead to apoptosis and they can also serve as signal molecules. In the light, chloroplasts are known to be one of the main sources of ROS in plants. However, the components involved in oxygen reduction and the detailed chemical mechanism are not yet well established. The present review describes the experimental data and theoretical considerations that implicate the plastoquinone pool (PQ-pool) in this process. The evidence indicates that the PQ-pool has a dual role: (1) the reduction of O(2) by plastosemiquinone to superoxide and (2) the reduction of superoxide by plastohydroquinone to hydrogen peroxide. The second role represents not only the scavenging of superoxide, but also the generation of hydrogen peroxide as an important signaling molecule. The regulatory and protective functions of the PQ-pool are discussed in the context of these reactions.
    Physiologia Plantarum 10/2010; 140(2):103-10. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The redox state of plastoquinone-pool in chloroplasts is crucial for driving many responses to variable environment, from short-term effects to those at the gene expression level. In the present studies, we showed for the first time that the plastoquinone-pool undergoes relatively fast oxidation during high light stress of low light-grown Arabidopsis plants. This oxidation was not caused by photoinhibition of photosystem II, but mainly by singlet oxygen generated in photosystem II and non-photochemical quenching in light harvesting complex antenna of the photosystem, as revealed in experiments with a singlet oxygen scavenger and with Arabidopsis npq4 mutant. The latter mechanism suppresses the influx of electrons to the plastoquinone-pool preventing its excessive reduction. The obtained results are of crucial importance in light of the function of the redox state of the plastoquinone-pool in triggering many high light-stimulated physiological responses of plants.
    Biochimica et Biophysica Acta 02/2012; 1817(5):705-10. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Singlet oxygen (¹O₂) scavenging activity of plastoquinol in photosystem II (PSII) of higher plants was studied by electron paramagnetic resonance (EPR) spin-trapping technique. It is demonstrated here that illumination of spinach PSII membranes deprived of intrinsic plastoquinone results in ¹O₂ formation, as monitored by TEMPONE EPR signal. Interestingly, the addition of exogenous plastoquinol (PQH₂-1) to PQ-depleted PSII membranes significantly suppressed TEMPONE EPR signal. The presence of exogenous plastoquinols with a different side-chain length (PQH₂-n, n isoprenoid units in the side chain) caused a similar extent of ¹O₂ scavenging activity. These observations reveal that plastoquinol exogenously added to PQ-depleted PSII membranes serves as efficient scavenger of ¹O₂.
    Biochimica et Biophysica Acta 11/2010; 1797(11):1807-11. · 4.66 Impact Factor


Available from