The variant ‘his-box’ of the C18-Δ9-PUFA-specific elongase IgASE1 from Isochrysis galbana is essential for optimum enzyme activity

School of Biological Sciences, University of Bristol, Woodland Road, BS8 1UG, Bristol, UK. <>
FEBS Letters (Impact Factor: 3.17). 08/2003; 547(1-3):137-9. DOI: 10.1016/S0014-5793(03)00676-8
Source: PubMed

ABSTRACT IgASE1, a C18-Delta9-polyunsaturated fatty acid-specific fatty acid elongase component from Isochrysis galbana, contains a variant histidine box (his-box) with glutamine replacing the first histidine of the conserved histidine-rich motif present in all other known equivalent proteins. The importance of glutamine and other variant amino acid residues in the his-box of IgASE1 was determined by site-directed mutagenesis. Results showed that all the variation in amino acid sequence between this motif in IgASE1 and the consensus sequences of other elongase components was required for optimum enzyme activity. The substrate specificity was shown to be unaffected by these changes suggesting that components of the his-box are not directly responsible for substrate specificity.

Download full-text


Available from: Colin Michael Lazarus, Jan 17, 2014
41 Reads
  • Source
    • "Qi & R. Hooley, unpublished). AtPAT10C 192 A was made by PCR mutagenesis (Qi et al., 2003) using primer pairs DHHCtoAF and ZFendnsE, and ZFbegK and DHHCtoAR (Table S3). PCR products were ligated in pJET1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: S-acylation of eukaryotic proteins is the reversible attachment of palmitic or stearic acid to cysteine residues, catalysed by protein S-acyl transferases that share an Asp-His-His-Cys (DHHC) motif. Previous evidence suggests that in Arabidopsis S-acylation is involved in the control of cell size, polarity and the growth of pollen tubes and root hairs. Using a combination of yeast genetics, biochemistry, cell biology and loss of function genetics the roles of a member of the protein S-acyl transferase PAT family, AtPAT10 (At3g51390), have been explored. In keeping with its role as a PAT, AtPAT10 auto-S-acylates, and partially complements the yeast akr1 PAT mutant, and this requires Cys192 of the DHHC motif. In Arabidopsis AtPAT10 is localized in the Golgi stack, trans-Golgi network/early endosome and tonoplast. Loss-of-function mutants have a pleiotropic phenotype involving cell expansion and division, vascular patterning, and fertility that is rescued by wild-type AtPAT10 but not by catalytically inactive AtPAT10C192A. This supports the hypothesis that AtPAT10 is functionally independent of the other Arabidopsis PATs. Our findings demonstrate a growing importance of protein S-acylation in plants, and reveal a Golgi and tonoplast located S-acylation mechanism that affects a range of events during growth and development in Arabidopsis.
    New Phytologist 06/2013; 200(2). DOI:10.1111/nph.12385 · 7.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A cDNA isolated from the prymnesiophyte micro-alga Isochrysis galbana, designated IgASE1, encodes a fatty acid elongating component that is specific for linoleic acid (C18:2n-6) and alpha-linolenic acid (C18:3n-3). Constitutive expression of IgASE1 in Arabidopsis resulted in the accumulation of eicosadienoic acid (EDA; C20:2n-6) and eicosatrienoic acid (ETrA; C20:3n-3) in all tissues examined, with no visible effects on plant morphology. Positional analysis of the various lipid classes indicated that these novel fatty acids were largely excluded from the sn-2 position of chloroplast galactolipids and seed triacylglycerol, whereas they were enriched in the same position in phosphatidylcholine. EDA and ETrA are precursors of arachidonic acid (C20:4n-6), eicosapentaenoic acid (C20:5n-3), and docosahexaenoic acid (C22:6n-3) synthesized via the so-called omega6 Delta8 desaturase and omega3 Delta8 desaturase biosynthetic pathways, respectively. The synthesis of significant quantities of EDA and ETrA in a higher plant is therefore a key step in the production of very long chain polyunsaturated fatty acid in oil-seed species. The results are further discussed in terms of prokaryotic and eukaryotic pathways of lipid synthesis in plants.
    Plant physiology 07/2004; 135(2):859-66. DOI:10.1104/pp.104.038984 · 6.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the production of two very long chain polyunsaturated fatty acids, arachidonic acid (AA) and eicosapentaenoic acid (EPA), in substantial quantities in a higher plant. This was achieved using genes encoding enzymes participating in the omega3/6 Delta8 -desaturation biosynthetic pathways for the formation of C20 polyunsaturated fatty acids. Arabidopsis thaliana was transformed sequentially with genes encoding a Delta9 -specific elongating activity from Isochrysis galbana, a Delta8 -desaturase from Euglena gracilis and a Delta5 -desaturase from Mortierella alpina. Instrumental in the successful reconstitution of these C20 polyunsaturated fatty acid biosynthetic pathways was the I. galbana C18-Delta9 -elongating activity, which may bypass rate-limiting steps present in the conventional Delta6 -desaturase/elongase pathways. The accumulation of EPA and AA in transgenic plants is a breakthrough in the search for alternative sustainable sources of fish oils.
    Nature Biotechnology 07/2004; 22(6):739-45. DOI:10.1038/nbt972 · 41.51 Impact Factor
Show more