Article

Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes.

Clock Cell Biology Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2003; 278(42):41519-27. DOI: 10.1074/jbc.M304564200
Source: PubMed

ABSTRACT CLOCK is a positive component of a transcription/translation-based negative feedback loop of the central circadian oscillator in the suprachiasmatic nucleus in mammals. To examine CLOCK-regulated circadian transcription in peripheral tissues, we performed microarray analyses using liver RNA isolated from Clock mutant mice. We also compared expression profiles with those of Cryptochromes (Cry1 and Cry2) double knockout mice. We identified more than 100 genes that fluctuated from day to night and of which expression levels were decreased in Clock mutant mice. In Cry-deficient mice, the expression levels of most CLOCK-regulated genes were elevated to the upper range of normal oscillation. Most of the screened genes had a CLOCK/BMAL1 binding site (E box) in the 5'-flanking region. We found that CLOCK was absolutely concerned with the circadian transcription of one type of liver genes (such as DBP, TEF, and Usp2) and partially with another (such as mPer1, mPer2, mDec1, Nocturnin, P450 oxidoreductase, and FKBP51) because the latter were damped but remained rhythmic in the mutant mice. Our results showed that CLOCK and CRY proteins are involved in the transcriptional regulation of many circadian output genes in the mouse liver. In addition to being a core component of the negative feedback loop that drives the circadian oscillator, CLOCK also appears to be involved in various physiological functions such as cell cycle, lipid metabolism, immune functions, and proteolysis in peripheral tissues.

0 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have been investigating whether xBmal1 and xNocturnin play a role in somitogenesis, a cyclic developmental process with an ultradian period. Previous work from our lab shows that circadian genes (xPeriod1, xPeriod2, xBmal1, and xNocturnin) are expressed in developing somites. Somites eventually form the vertebrae, muscles of the back, and dermis. In Xenopus, a pair of somites is formed about every 50 minutes from anterior to posterior. We were intrigued by the co-localization of circadian genes in an embryonic tissue known to be regulated by an ultradian clock. Cyclic expression of genes involved in Notch signaling has been implicated in the somite clock. Disruption of Notch signaling in humans has been linked to skeletal defects in the vertebral column. We found that both depletion (morpholino) and overexpression (mRNA) of xBMAL1 protein (bHLH transcription factor) or xNOCTURNIN protein (deadenylase) on one side of the developing embryo led to a significant decrease in somite number with respect to the untreated side (p<0.001). These manipulations also significantly affect expression of a somite clock component (xESR9; p<0.05). We observed opposing effects on somite size. Depletion of xBMAL1 or xNOCTURNIN caused a statistically significant decrease in somite area (quantified using NIH ImageJ; p<0.002), while overexpression of these proteins caused a significant dose dependent increase in somite area (p<0.02; p<0.001, respectively). We speculate that circadian genes may play two separate roles during somitogenesis. Depletion and overexpression of xBMAL1 and NOCTURNIN both decrease somite number and influence expression of a somite clock component, suggesting that these proteins may modulate the timing of the somite clock in the undifferentiated presomitic mesoderm. The dosage dependent effects on somite area suggest that xBMAL1 and xNOCTURNIN may also act during somite differentiation to promote myogenesis.
    PLoS ONE 09/2014; 9(9):e108266. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock-DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs.
    Biochemistry 10/2014; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin.
    International Journal of Molecular Sciences 01/2014; 15(10):18221-18252. · 2.34 Impact Factor