Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic and nongenomic mechanisms.

Department of Reproductive Medicine and Child Development, Division of Obstetrics and Gynecology, University of Pisa, Pisa 56100, Italy.
Endocrinology (Impact Factor: 4.72). 09/2003; 144(8):3449-55. DOI: 10.1210/en.2003-0044
Source: PubMed

ABSTRACT Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the major circulating steroid hormones in humans, and their levels progressively decline with age. Epidemiological studies suggest that DHEA/DHEAS concentrations may be inversely related to cardiovascular risk, but disagreement exists on this issue. Preliminary studies show that DHEA regulates vascular function, but few data have been published on the mechanisms. We show that DHEA administration to human endothelial cells triggers nitric oxide synthesis, due to enhanced expression and stabilization of endothelial nitric oxide synthase (eNOS). Additionally, DHEA rapidly activates eNOS, through a nontranscriptional mechanism that depends on ERK1/2 MAPK, but not on phosphatidylinositol 3-kinase/Akt. DHEA is not converted to estrogens or androgens by endothelial cells, and its genomic and nongenomic effects are not blocked by antagonists of the estrogen, progesterone, glucocorticoid, or androgen receptors, suggesting that DHEA acts through a specific receptor. Oral DHEA administration to ovariectomized Wistar rats dose-dependently restores aortic eNOS levels and eNOS activity, confirming the effects of DHEA in vivo. Our present data suggest that DHEA may have direct genomic and nongenomic effects on the vascular wall that are not mediated by other steroid hormone receptors, leading to eNOS activation and induction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although oncomiR miR-21 is highly expressed in liver and overexpressed in hepatocellular carcinoma (HCC), its regulation is uncharacterized. We examined the effect of physiologically relevant nanomolar concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEA-S) on miR-21 expression in HepG2 human hepatoma cells. 10 nM DHEA and DHEA-S increase pri-miR-21 transcription in HepG2 cells. Dietary DHEA increased miR-21 in vivo in mouse liver. siRNA and inhibitor studies suggest that DHEA-S requires desulfation for activity and that DHEA-induced pri-miR-21 transcription involves metabolism to androgen and estrogen receptor (AR and ER) ligands. Activation of ERβ and AR by DHEA metabolites androst-5-ene-3,17-dione (ADIONE), androst-5-ene-3β,17β-diol (ADIOL), dihydrotestosterone (DHT), and 5α-androstane-3β,17β-diol (3β-Adiol) increased miR-21 transcription. DHEA-induced miR-21 increased cell proliferation and decreased Pdcd4 protein, a bona fide miR-21. Estradiol (E2) inhibited miR-21 expression via ERα. DHEA increased ERβ and AR recruitment to the miR-21 promoter within the VMP1/TMEM49 gene, with possible significance in hepatocellular carcinoma.
    Molecular and Cellular Endocrinology 05/2014; · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dehydroepiandrosterone sulfate (DHEAS) is a circulating steroid produced in the adrenal cortex, brain, and gonads. Whereas a series of investigations attest to neuroprotective effects of the steroid in the brain, surprisingly little is known about the physiological effects of DHEAS on cells of the reproductive system. Here we demonstrate that DHEAS acting on the spermatogenic cell line GC-2 induces a time- and concentration-dependent phosphorylation of c-Src and Erk1/2 and activates the transcription factors ATF-1 and CREB. These actions are consistent with the non-classical signaling pathway of testosterone and suggest that DHEAS is a pro-androgen that is converted into testosterone in order to exert its biological activity. The fact, however, that steroid sulfatase mRNA was not detected in the GC-2 cells and the clear demonstration of DHEAS-induced activation of Erk1/2, ATF-1 and CREB after silencing the androgen receptor by siRNA clearly contradict this assumption and make it appear unlikely that DHEAS has to be converted in the cytosol into a different steroid in order to activate the kinases and transcription factors mentioned. Instead, it is likely that the DHEAS-induced signaling is mediated through the interaction of the steroid with a membrane-bound G-protein-coupled receptor, since silencing of Gnα11 leads to the abolition of the DHEAS-induced stimulation of Erk1/2, ATF-1, and CREB. The investigation presented here shows a hormone-like activity of DHEAS on a spermatogenic cell line. Since DHEAS is produced in male and female reproductive organs, these findings might help to define new roles for DHEAS in the physiology of reproduction.
    Biochimica et Biophysica Acta 08/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adrenal prohormone dehydroepiandrosterone (DHEA) and its sulphate conjugate (DHEAS) steadily decrease with age by 10% per decade reaching a nadir after the age of 80. Both DHEA and DHEAS (DHEA/S) exert many biological activities in different tissues and organs. In particular, DHEA and DHEAS are produced de novo in the brain, hence their classification as neurosteroids. In humans, the brain-to-plasma ratios for DHEA and DHEAS are 4-6.5 and 8.5, respectively, indicating a specific neuroendocrine role for these hormones. DHEA/S stimulates neurite growth, neurogenesis and neuronal survival, apoptosis, catecholamine synthesis and secretion. Together with antioxidant, anti-inflammatory and anti-glucocorticoid properties, it has been hypothesized a neuroprotective effect for DHEA/S. We conducted an accurate research of the literature using PubMed. In the period of time between 1994 and 2013, we selected the observational human studies testing the relationship between DHEA/S and cognitive function in both sexes. The studies are presented according to the cross-sectional and longitudinal design and to the positive or neutral effects on different domains of cognitive function. We also analysed the Clinical Trials, available in the literature, having cognitive domains as the main or secondary outcome. Although the cross-sectional evidence of a positive association between DHEA/S and cognitive function, longitudinal studies and RCTs using DHEA oral treatment (50mg/day) in normal or demented adult-older subjects, have produced conflicting and inconsistent results. In summary, the current data do not provide clear evidence for the usefulness of DHEA treatment to improve cognitive function in adult-older subjects.
    The Journal of steroid biochemistry and molecular biology 04/2014; · 3.98 Impact Factor