Calculation of protein extinction coefficients from amino acid sequence data.

Institute of Molecular Biology, University of Oregon, Eugene 97403.
Analytical Biochemistry (Impact Factor: 2.31). 12/1989; 182(2):319-26. DOI: 10.1016/0003-2697(89)90602-7
Source: PubMed

ABSTRACT Quantitative study of protein-protein and protein-ligand interactions in solution requires accurate determination of protein concentration. Often, for proteins available only in "molecular biological" amounts, it is difficult or impossible to make an accurate experimental measurement of the molar extinction coefficient of the protein. Yet without a reliable value of this parameter, one cannot determine protein concentrations by the usual uv spectroscopic means. Fortunately, knowledge of amino acid residue sequence and promoter molecular weight (and thus also of amino acid composition) is generally available through the DNA sequence, which is usually accurately known for most such proteins. In this paper we present a method for calculating accurate (to +/- 5% in most cases) molar extinction coefficients for proteins at 280 nm, simply from knowledge of the amino acid composition. The method is calibrated against 18 "normal" globular proteins whose molar extinction coefficients are accurately known, and the assumptions underlying the method, as well as its limitations, are discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanism underlining the antibacterial activity of the bacteriocin AS-48 is not known, and two different and opposite alternatives have been proposed. Available data suggested that the interaction of positively charged amino acids of AS-48 with the membrane would produce membrane destabilization and disruption. Alternatively, it has been proposed that AS-48 activity could rely on the effective insertion of the bacteriocin into the membrane. The biological and structural properties of the AS-48G13K/L40K double mutant were investigated to shed light on this subject. Compared with the wild type, the mutant protein suffered an important reduction in the antibacterial activity. Biochemical and structural studies of AS-48G13K/L40K mutant suggest the basis of its decreased antimicrobial activity. Lipid cosedimentation assays showed that the membrane affinity of AS-48G13K/L40K is 12-fold lower than that observed for the wild type. L40K mutation is responsible for this reduced membrane affinity and thus, hydrophobic interactions are involved in membrane association. Furthermore, the high-resolution crystal structure of AS-48G13K/L40K, together with the study of its dimeric character in solution showed that G13K stabilizes the inactive water-soluble dimer, which displays a reduced dipole moment. Our data suggest that the cumulative effect of these three affected properties reduces AS-48 activity, and point out that the bactericidal effect is achieved by the electrostatically driven approach of the inactive water-soluble dimer towards the membrane, followed by the dissociation and insertion of the protein into the lipid bilayer. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Structural Biology 03/2015; DOI:10.1016/j.jsb.2015.03.006 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The EcoKI DNA methyltransferase is a trimeric protein comprised of two modification subunits (M) and one sequence specificity subunit (S). This enzyme forms the core of the EcoKI restriction/modification (RM) enzyme. The 3′ end of the gene encoding the M subunit overlaps by 1 nt the start of the gene for the S subunit. Translation from the two different open reading frames is translationally coupled. Mutagenesis to remove the frameshift and fuse the two subunits together produces a functional RM enzyme in vivo with the same properties as the natural EcoKI system. The fusion protein can be purified and forms an active restriction enzyme upon addition of restriction subunits and of additional M subunit. The Type I RM systems are grouped into families, IA to IE, defined by complementation, hybridization and sequence similarity. The fusion protein forms an evolutionary intermediate form lying between the Type IA family of RM enzymes and the Type IB family of RM enzymes which have the frameshift located at a different part of the gene sequence.
    Nucleic Acids Research 11/2012; 40(21):10916-10924. DOI:10.1093/nar/gks876 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major obstacle in the study of membrane proteins is their solubilization in a stable and active conformation when using detergents. Here, we explored a detergent-free approach to isolating the tetrameric potassium channel KcsA directly from the membrane of Escherichia coli, using a styrene-maleic acid copolymer. This polymer self-inserts into membranes and is capable of extracting membrane patches in the form of nanosize discoidal proteolipid particles or "native nanodiscs." Using circular dichroism and tryptophan fluorescence spectroscopy, we show that the conformation of KcsA in native nanodiscs is very similar to that in detergent micelles, but that the thermal stability of the protein is higher in the nanodiscs. Furthermore, as a promising new application, we show that quantitative analysis of the co-isolated lipids in purified KcsA-containing nanodiscs allows determination of preferential lipid-protein interactions. Thin-layer chromatography experiments revealed an enrichment of the anionic lipids cardiolipin and phosphatidylglycerol, indicating their close proximity to the channel in biological membranes and supporting their functional relevance. Finally, we demonstrate that KcsA can be reconstituted into planar lipid bilayers directly from native nanodiscs, which enables functional characterization of the channel by electrophysiology without first depriving the protein of its native environment. Together, these findings highlight the potential of the use of native nanodiscs as a tool in the study of ion channels, and of membrane proteins in general.