Article

Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer

Department of Surgery, University of Toronto, Toronto, Ontario, Canada
New England Journal of Medicine (Impact Factor: 54.42). 08/2003; 349(3):247-57. DOI: 10.1056/NEJMoa022289
Source: PubMed

ABSTRACT Colon cancers with high-frequency microsatellite instability have clinical and pathological features that distinguish them from microsatellite-stable tumors. We investigated the usefulness of microsatellite-instability status as a predictor of the benefit of adjuvant chemotherapy with fluorouracil in stage II and stage III colon cancer.
Tumor specimens were collected from patients with colon cancer who were enrolled in randomized trials of fluorouracil-based adjuvant chemotherapy. Microsatellite instability was assessed with the use of mononucleotide and dinucleotide markers.
Of 570 tissue specimens, 95 (16.7 percent) exhibited high-frequency microsatellite instability. Among 287 patients who did not receive adjuvant therapy, those with tumors displaying high-frequency microsatellite instability had a better five-year rate of overall survival than patients with tumors exhibiting microsatellite stability or low-frequency instability (hazard ratio for death, 0.31 [95 percent confidence interval, 0.14 to 0.72]; P=0.004). Among patients who received adjuvant chemotherapy, high-frequency microsatellite instability was not correlated with increased overall survival (hazard ratio for death, 1.07 [95 percent confidence interval, 0.62 to 1.86]; P=0.80). The benefit of treatment differed significantly according to the microsatellite-instability status (P=0.01). Adjuvant chemotherapy improved overall survival among patients with microsatellite-stable tumors or tumors exhibiting low-frequency microsatellite instability, according to a multivariate analysis adjusted for stage and grade (hazard ratio for death, 0.72 [95 percent confidence interval, 0.53 to 0.99]; P=0.04). By contrast, there was no benefit of adjuvant chemotherapy in the group with high-frequency microsatellite instability.
Fluorouracil-based adjuvant chemotherapy benefited patients with stage II or stage III colon cancer with microsatellite-stable tumors or tumors exhibiting low-frequency microsatellite instability but not those with tumors exhibiting high-frequency microsatellite instability.

2 Followers
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The KDM4 family of lysine demethylases consists of five members, KDM4A, -B and -C that demethylate H3K9me2/3 and H3K36me2/3 marks, while KDM4D and -E demethylate only H3K9me2/3. Recent studies implicated KDM4 proteins in regulating genomic instability and carcinogenesis. Here, we describe a previously unrecognized pathway by which hyperactivity of KDM4 demethylases promotes genomic instability. We show that overexpression of KDM4A-C, but not KDM4D, disrupts MSH6 foci formation during S phase by demethylating its binding site, H3K36me3. Consequently, we demonstrate that cells overexpressing KDM4 members are defective in DNA mismatch repair (MMR), as evident by the instability of four microsatellite markers and the remarkable increase in the spontaneous mutations frequency at the HPRT locus. Furthermore, we show that the defective MMR in cells overexpressing KDM4C is mainly due to the increase in its demethylase activity and can be mended by KDM4C downregulation. Altogether, our data suggest that cells overexpressing KDM4A-C are defective in DNA MMR and this may contribute to genomic instability and tumorigenesis. © 2015. Published by The Company of Biologists Ltd.
    03/2015; DOI:10.1242/bio.201410991
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate gene mutations and DNA mismatch repair (MMR) protein abnormality in Chinese colorectal carcinoma (CRC) patients and their correlations with clinicopathologic features. Clinical and pathological information for 535 patients including 538 tumors was reviewed and recorded. Mutation analyses for exon 2 of KRAS gene and exon 15 of BRAF gene were performed by Sanger sequencing except that in 9 tumors amplification refractory mutation system PCR was used. Expression of MMR proteins including MHL1, MSH2, MSH6 and PMS2 was evaluated by immunohistochemistry. Correlations of KRAS and BRAF mutation status and the expression status of MMR proteins with age, gender, cancer stage, location, and histology were analyzed. Correlations between KRAS or BRAF mutations and MMR protein expression were also explored. The overall frequencies of KRAS and BRAF mutations were 37.9% and 4.4%, respectively. KRAS mutations were more common in patients ≥ 50 years old (39.8% vs 22% in patients < 50 years old, P < 0.05). The frequencies of BRAF mutants were higher in tumors from females (6.6% vs males 2.8%, P < 0.05), located in the right colon (9.6% vs 2.1% in the left colon, 1.8% in the rectum, P < 0.01), with mucinous differentiation (9.8% vs 2.8% without mucinous differentiation, P < 0.01), or being poorly differentiated (9.5% vs 3.4% well/moderately differentiated, P < 0.05). MMR deficiency was strongly associated with proximal location (20.5% in the right colon vs 9.2% in the left colon and 5.1% in the rectum, P < 0.001), early cancer stage (15.0% in stages I-II vs 7.7% in stages III-IV, P < 0.05), and mucinous differentiation (20.2% vs 9.2% without mucin, P < 0.01). A higher frequency of MLH1/PMS2 loss was found in females (9.2% vs 4.4% in males, P < 0.05), and MSH2/MSH6 loss tended to be seen in younger (<50 years old) patients (12.0% vs 4.0% ≥ 50 years old, P < 0.05). MMR deficient tumors were less likely to have KRAS mutations (18.8% vs 41.7% in MMR proficient tumors, P < 0.05) and tumors with abnormal MLH1/PMS2 tended to harbor BRAF mutations (15.4% vs 4.2% in MMR proficient tumors, P < 0.05). The frequency of sporadic CRCs having BRAF mutation, MLH1 deficiency and MSI in Chinese population may be lower than that in the Western population.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide and continues to be a major healthcare concern. Molecular heterogeneity of CRC is believed to be one of the main factors responsible for the considerable variability in treatment response. With the recent development of powerful genomic technologies, novel insights in tumor biology of CRC have now been provided, facilitating the recognition of new molecular subtypes with prognostic and predictive implications. The purpose of this review article is to summarize current knowledge about genomic, epigenomic, and proteomic characteristics of CRC, as well as their implications for biomarker identification and individualized targeted therapy. Supplementing the findings from several previous studies, the Cancer Genome Atlas (TCGA) project recently finalized the systematic characterization of CRC resulting in the first tumor dataset with complete molecular measurements at DNA, RNA, and protein levels. The challenge now is to translate these findings into a robust and reproducible CRC classification system linking molecular features of the tumor to precision medicine.
    Langenbeck s Archives of Surgery 02/2015; 400(2). DOI:10.1007/s00423-015-1276-0 · 2.16 Impact Factor

Preview

Download
1 Download
Available from