Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer.

Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Toronto.
New England Journal of Medicine (Impact Factor: 54.42). 08/2003; 349(3):247-57. DOI: 10.1056/NEJMoa022289
Source: PubMed

ABSTRACT Colon cancers with high-frequency microsatellite instability have clinical and pathological features that distinguish them from microsatellite-stable tumors. We investigated the usefulness of microsatellite-instability status as a predictor of the benefit of adjuvant chemotherapy with fluorouracil in stage II and stage III colon cancer.
Tumor specimens were collected from patients with colon cancer who were enrolled in randomized trials of fluorouracil-based adjuvant chemotherapy. Microsatellite instability was assessed with the use of mononucleotide and dinucleotide markers.
Of 570 tissue specimens, 95 (16.7 percent) exhibited high-frequency microsatellite instability. Among 287 patients who did not receive adjuvant therapy, those with tumors displaying high-frequency microsatellite instability had a better five-year rate of overall survival than patients with tumors exhibiting microsatellite stability or low-frequency instability (hazard ratio for death, 0.31 [95 percent confidence interval, 0.14 to 0.72]; P=0.004). Among patients who received adjuvant chemotherapy, high-frequency microsatellite instability was not correlated with increased overall survival (hazard ratio for death, 1.07 [95 percent confidence interval, 0.62 to 1.86]; P=0.80). The benefit of treatment differed significantly according to the microsatellite-instability status (P=0.01). Adjuvant chemotherapy improved overall survival among patients with microsatellite-stable tumors or tumors exhibiting low-frequency microsatellite instability, according to a multivariate analysis adjusted for stage and grade (hazard ratio for death, 0.72 [95 percent confidence interval, 0.53 to 0.99]; P=0.04). By contrast, there was no benefit of adjuvant chemotherapy in the group with high-frequency microsatellite instability.
Fluorouracil-based adjuvant chemotherapy benefited patients with stage II or stage III colon cancer with microsatellite-stable tumors or tumors exhibiting low-frequency microsatellite instability but not those with tumors exhibiting high-frequency microsatellite instability.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inevitable side effects of the currently used chemotherapy are associated with serious syndromes. Genotoxic effects and consequent genetic instability may play an important role in these syndromes. The aim of the study was to evaluate chemotherapy-related microsatellite instability (MSI), loss of heterozygosity (LOH), and loss of mismatch repair (MMR) expression in solid tumor patients. Samples were collected from 117 de novo patients with solid tumors of different origins. Specimens, taken pre- and post-treatment, were screened for MSI and LOH in 10 microsatellite sequences in blood, and expression of five MMR proteins were analyzed in cancer tissues using immunohistochemistry. Statistical analysis included the use of; Fisher's exact test, Chi Square, and an inter-rater reliability test using Cohen's kappa coefficient. Microsatellite analysis showed that 66.7% of the patients had MSI, including 23.1% high-positive MSI and 43.6% low-positive MSI. A large portion (41%) of the patients exhibited LOH in addition to MSI. MSI and LOH were detected in seven loci in which incidence rates ranged from 3.8% positive for Bat-26 to 34.6% positive for Tp53-Alu. Immunohistochemistry revealed that human mutL homolog 1 (hMLH1) expression was deficient in 29.1% of the patients, whereas 18.8%, 23.9%, 13.4%, and 9.7% were deficient for human mutS homolog 2 (hMSH2), P53, human mutS homolog 6 (hMSH6) and human post-meiotic segregation increased 2 (hPMS2), respectively. There was a significant correlation between MSI and LOH incidence in Tp53-Alu, Mfd41, and APC with low or deficient expression of hMLH1, hMSH2, and P53. A significant association between MSI and LOH, and incidence of secondary tumors was also evident. The negative correlation between MMR expression, MSI, and LOH and increased resistance to anti-cancer drugs and development of secondary cancers demonstrates a useful aid in early detection of potential chemotherapy-related side-effects. The diagnostic value demonstrated in our earlier study on breast cancer patients was confirmed for other solid tumors.
    Cancer Cell International 12/2014; 14(1):118. · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The morbidity and mortality attributable to heritable and sporadic carcinomas of the colon are substantial and affect children and adults alike. Despite current colonoscopy screening recommendations colorectal adenocarcinoma (CRC) still accounts for almost 140000 cancer cases yearly. Familial adenomatous polyposis (FAP) is a colon cancer predisposition due to alterations in the adenomatous polyposis coli gene, which is mutated in most CRC. Since the beginning of the genomic era next-generation sequencing analyses of CRC continue to improve our understanding of the genetics of tumorigenesis and promise to expand our ability to identify and treat this disease. Advances in genome sequence analysis have facilitated the molecular diagnosis of individuals with FAP, which enables initiation of appropriate monitoring and timely intervention. Genome sequencing also has potential clinical impact for individuals with sporadic forms of CRC, providing means for molecular diagnosis of CRC tumor type, data guiding selection of tumor targeted therapies, and pharmacogenomic profiles specifying patient specific drug tolerances. There is even a potential role for genomic sequencing in surveillance for recurrence, and early detection, of CRC. We review strategies for diagnostic assessment and management of FAP and sporadic CRC in the current genomic era, with emphasis on the current, and potential for future, impact of genome sequencing on the clinical care of these conditions.
    World Journal of Clinical Oncology. 12/2014; 5(5):1036-1047.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Die molekulare Pathogenese kolorektaler Karzinome ist heterogen. Während die Mehrzahl der kolorektalen Karzinome der klassischen Adenom-Karzinom-Sequenz folgt und eine chromosomale Instabilität aufweist, zeigen etwa 15 % der kolorektalen Karzinome eine Defizienz des DNA-Mismatch-Reparatursystems. Diese Karzinome weisen zahlreiche Mutationen in repetitiven DNA-Bereichen auf, ein Phänotyp, der als hochgradige Mikrosatelliteninstabilität (MSI-H) bezeichnet wird. Die Pathogenese von MSI-H-Karzinomen wird durch die Mismatch-Reparatur-Defizienz und die dadurch ausgelösten Insertions- und Deletionsmutationen in Mikrosatelliten vorangetrieben, welche im kodierenden Bereich von Tumorsuppressor-Genen wie beispielsweise TGFBR2 lokalisiert sind. Die MSI-vermittelten Mutationen von Tumorsuppressor-Genen führen neben der funktionellen Inaktivierung auch zur Verschiebung des translationalen Leserasters und somit zur Generierung so genannter Frameshiftpeptide (FSPs). Diese FSPs können vom Immunsystem als körperfremd erkannt werden. Wir konnten zeigen, dass bei der Mehrzahl der Patienten mit kolorektalem MSI-H-Karzinom FSP-spezifische Immunantworten, im Wesentlichen T-Zell-vermittelt, nachweisbar sind. Diese Immunantwort, die spezifisch gegen Tumorantigene gerichtet ist, wird auch als wesentliche Ursache für die dichte lokale Infiltration mit Lymphozyten, die typisch für kolorektale MSI-H-Tumoren ist, angesehen. Ein weiteres typisches Merkmal von MSI-H-Karzinomen ist das Auftreten von Alterationen der Antigenpräsentationsmaschinerie. Mutationen des Beta2-Mikroglobulin(B2M)-Gens, die direkt aus der Mismatch-Reparatur-Defizienz resultieren, sind hier der häufigste Mechanismus. Wir haben nachgewiesen, dass B2M-Mutationen mit dem M0-Stadium und einer sehr günstigen Prognose assoziiert sind. Die Charakterisierung der immunologischen Besonderheiten von MSI-H-Tumoren hat zur Initiation einer klinischen Studie geführt, in welcher eine FSP-Vakzinierung bei Patienten mit kolorektalen MSI-H-Karzinomen derzeit klinisch evaluiert wird. Abstract The molecular pathogenesis of colorectal cancer is heterogeneous. Whereas the majority of colorectal cancers follow the classical adenoma-carcinoma sequence and display chromosomal instability, a subset of approximately 15 % of colorectal cancers show a deficiency of the DNA mismatch repair system. These carcinomas present with numerous mutations at repetitive DNA stretches, a phenotype termed high-level microsatellite instability (MSI-H). The pathogenesis of MSI-H cancers is driven by mismatch repair deficiency-induced insertion/deletion mutations affecting microsatellites located in the coding region of tumor suppressor genes, such as TGFBR2. The MSI-induced mutations of tumor suppressor genes not only lead to functional inactivation but also to shifts of the translational reading frame and consequently to the generation of frameshift peptides (FSPs). These FSPs can be recognized as foreign by the host immune system. It could be shown that in the majority of MSI-H colorectal cancer patients, FSP-specific T cell-mediated immune responses can be detected. These tumor antigen-specific immune responses are regarded as a major reason for the dense local lymphocyte infiltration which is typical of MSI-H colorectal cancer. A further characteristic feature of MSI-H cancers is the occurrence of alterations affecting the cellular antigen presentation mechanism where beta2-microglobulin (B2M) mutations that directly result from DNA mismatch repair deficiency represent the most common mechanism. It could be demonstrated that B2M mutations are associated with M0 stage and a very favorable prognosis. The characterization of the particular immunological properties of MSI-H tumors have paved the way for the initiation of a clinical trial in which FSP vaccination is currently being clinically evaluated in patients with MSI-H colorectal cancer.
    Der Pathologe 11/2013; 34(S2):277-281. · 0.64 Impact Factor


Available from