Direct Expansion of Functional CD25+ CD4+ Regulatory T Cells by Antigen-processing Dendritic Cells

Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10021, USA.
Journal of Experimental Medicine (Impact Factor: 12.52). 08/2003; 198(2):235-47. DOI: 10.1084/jem.20030422
Source: PubMed


An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25- autoimmune disease-inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25- CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25- CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC-T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25- CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.

Download full-text


Available from: Kristin V Tarbell,
  • Source
    • "In absence of stimulation at steady-state DCs can induce tolerance. Antigen inoculation in absence of adjuvant leads to T-cell anergy or T-cell deletion (17, 72), and can induce regulatory T cells in the periphery (106–109). Hence, in vivo delivery of antigens to DCs in absence of adjuvant may also be a promising strategy to treat autoimmune disorders as reviewed elsewhere (110). But, to induce immunity rather than tolerance, it is essential to provide the DCs with an activation signal or “adjuvant” in addition to the vaccine antigen. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8(+) T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response.
    Frontiers in Immunology 05/2014; 5:255. DOI:10.3389/fimmu.2014.00255
  • Source
    • "Administration of these immunosuppressive DC promotes production of cytokines that impair T-cell activation and is associated with increased numbers and enhanced function of Foxp3+ T regulatory (Treg) cells [reviewed in [25], [26]]. Indeed, the success of suppressive DC-based therapies to upregulate Foxp3+ Tregs are particularly striking in diabetic mouse models [27], [28]. In addition to the reproducible effects of DC on Treg upregulation, emerging data indicate that other immunoregulatory cells, including NKT [29] and B-lymphocytes [30] are DC-senstitive in their role of maintaining/promoting tolerance. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study was to identify immune cell populations, in addition to Foxp3+ T-regulatory cells, that participate in the mechanisms of action of tolerogenic dendritic cells shown to prevent and reverse type 1 diabetes in the Non-Obese Diabetic (NOD) mouse strain. Co-culture experiments using tolerogenic dendritic cells and B-cells from NOD as well as transgenic interleukin-10 promoter-reporter mice along with transfer of tolerogenic dendritic cells and CD19+ B-cells into NOD and transgenic mice, showed that these dendritic cells increased the frequency and numbers of interleukin-10-expressing B-cells in vitro and in vivo. The expansion of these cells was a consequence of both the proliferation of pre-existing interleukin-10-expressing B-lymphocytes and the conversion of CD19+ B-lymphcytes into interleukin-10-expressing cells. The tolerogenic dendritic cells did not affect the suppressive activity of these B-cells. Furthermore, we discovered that the suppressive murine B-lymphocytes expressed receptors for retinoic acid which is produced by the tolerogenic dendritic cells. These data assist in identifying the nature of the B-cell population increased in response to the tolerogenic dendritic cells in a clinical trial and also validate very recent findings demonstrating a mechanistic link between human tolerogenic dendritic cells and immunosuppressive regulatory B-cells.
    PLoS ONE 01/2014; 9(1):e83575. DOI:10.1371/journal.pone.0083575 · 3.23 Impact Factor
  • Source
    • "First, the germline deletion of Bim results in loss of Bim from all tissues and it was possible that non-T cell expression of Bim controls Treg homeostasis. In particular, the increased lifespan of Bim-deficient dendritic cells (DC) (Chen et al., 2007) could contribute to Treg accrual as DC can promote Treg homeostasis and inducible Treg development (Yamazaki et al., 2003; Belkaid and Oldenhove, 2008). Second, Bim−/− thymocytes are resistant to negative selection (Bouillet et al., 2002) and such altered thymic development in Bim−/− mice could skew the levels of Treg in Bim−/− mice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We and others have shown that regulatory T cells (Treg) accumulate dramatically with age in both humans and mice. Such Treg accrual contributes to age-related immunosenescence as they reduce the response to tumors and parasite infection. While we reported earlier that aged Treg have decreased expression of the pro-apoptotic molecule Bim and germline deletion of Bim promoted earlier accumulation of Treg, it remains unclear whether the effects of Bim are: (i) Treg intrinsic and (ii) dominant to other BH3-only pro-apoptotic molecules. Further, the mechanism(s) controlling Bim expression in aged Treg remain unclear. Here we show that Treg-specific loss of Bim is sufficient to drive Treg accrual with age and that additional loss of the downstream apoptotic effectors Bax and Bak did not exacerbate Treg accumulation. Further, our results demonstrate that a subpopulation of Treg expands with age and is characterized by lower expression of CD25 (IL-2Rα) and Bim. Mechanistically, we found that IL-2 levels decline with age and likely explain the emergence of CD25(lo)Bim(lo) Treg because Treg in IL-2(-/-) mice are almost entirely comprised of CD25(lo)Bim(lo) cells, and IL-2 neutralization increases CD25(lo)Bim(lo) Treg in both young and middle-aged mice. Interestingly, the Treg population in aged mice had increased expression of CD122 (IL-2/IL-15Rβ) and neutralization or genetic loss of IL-15 led to less Treg accrual with age. Further, the decreased Treg accrual in middle-aged IL-15(-/-) mice was restored by the additional loss of Bim (IL-15(-/-)Bim(-/-)). Together, our data show that aging favors the accrual of CD25(lo) Treg whose homeostasis is supported by IL-15 as IL-2 levels become limiting. These data have implications for manipulating Treg to improve immune responses in the elderly.
    Frontiers in Immunology 06/2013; 4:161. DOI:10.3389/fimmu.2013.00161
Show more