Article

ABCB1 (MDR1)-type P-glycoproteins at the blood-brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder.

Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
Neuropsychopharmacology (Impact Factor: 7.83). 12/2003; 28(11):1991-9. DOI: 10.1038/sj.npp.1300257
Source: PubMed

ABSTRACT Multidrug-resistance gene 1-type P-glycoproteins (ABCB1-type P-gps) protect the brain against the accumulation of many toxic xenobiotics and drugs. We recently could show that the access of the endogenous glucocorticoids corticosterone and cortisol to the brain are regulated by ABCB1-type P-gps in vivo. ABCB1-type P-gp function, therefore, is likely to exert a profound influence on the regulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Hyperactivity of the HPA system is frequently observed in human affective disorder, and a considerable amount of evidence has been accumulated suggesting that normalization of the HPA system might be the final step necessary for stable remission of the disease. To examine whether blood-brain barrier (BBB) function influences neuroendocrine regulation, we investigated HPA system activity in abcb1ab (-/-) mice under basal conditions and following stress. Abcb1ab (-/-) mice showed consistently lower plasma ACTH levels and lower evening plasma corticosterone levels. CRH mRNA expression in the hypothalamic paraventricular nucleus was decreased and pituitary POMC mRNA expressing cells were significantly reduced in number in abcb1ab (-/-) mutants; however, they showed a normal activation of the HPA system following CRH stimulation. Lower doses of dexamethasone were required to suppress plasma corticosterone levels in mutants. Our data thus provide evidence for a sustained suppression of the HPA system at the hypothalamic level in abcb1ab (-/-) mice, suggesting that BBB function significantly regulates HPA system activity. Whether naturally occurring polymorphisms in the human ABCB1 gene might result in persistent changes in the responsiveness and regulation of the HPA system will be the subject of future investigations, correlating both genetic information with individual characteristics of the neuroendocrine phenotype.

0 Followers
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main purpose of this study was to evaluate the effect of aging on plasma and free corticosterone (CORT) levels in the brain in basal conditions and in response to an acute stressor. Microdialysis experiments were performed in the hippocampus (HC) and the prefrontal cortex (PFC) of young adult (6 months) and aged (24 months) male Wistar rats. Basal free levels of CORT in the HC and the PFC were higher in aged animals. Restraint stress increased plasma CORT and free CORT levels in the HC and the PFC both in young and aged animals. However, while the increase of plasma CORT was higher in aged rats compared with young rats, the increases of free CORT in the HC and the PFC were not different between these two groups of rats. These results suggest that the changes produced by aging in the brain may be related to the enhanced basal levels of free CORT and not to the CORT increases in response to stress.
    Neurobiology of aging 02/2012; 33(2):375-82. DOI:10.1016/j.neurobiolaging.2010.02.015 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms by which antidepressants regulate the hypothalamic-pituitary-adrenal (HPA) axis are still unknown. The ABCB1-type multiple drug resistance (MDR) p-glycoprotein (PGP) regulates the HPA axis by limiting the access of glucocorticoids to the brain in mice and humans. Previous work in cell cultures has found that antidepressants enhance glucocorticoid receptor (GR) function in vitro by inhibiting MDR PGP, and therefore by increasing the intracellular concentration of glucocorticoids-but this model has never been tested directly in animals. Here, the tricyclic antidepressant, desipramine (20 mg/kg/day, i.p., for seven days), was administered to abcb1ab MDR PGP knockout mice (congenic on the FVB/N background strain) and to FVB/N controls. The hippocampal mRNA expression of GR, mineralocorticoid receptor (MR), MDR (Mdr1a) PGP, and 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) were measured, together with plasma corticosterone levels. In FVB/N controls, desipramine induced a significant upregulation of GR mRNA in the CA1 region (+31%; p=0.045); in contrast, in abcb1ab (-/-) mice, desipramine induced a significant downregulation of GR mRNA in the CA1 region (-45%; p=0.004). MR mRNA expression was unaltered. Desipramine decreased corticosterone levels in both FVB/N controls and in abcb1ab (-/-) mice, but in abcb1ab (-/-) mice the effects were smaller. Specifically, in FVB/N controls (but not in abcb1ab (-/-) mice), desipramine reduced corticosterone levels not only compared with saline-treated mice but also compared with the 'physiological' levels of untreated mice (-39%; p=0.05). Finally, desipramine reduced Mdr1a mRNA expression across all hippocampus areas (-9 to -23%), but had no effect on 11beta-HSD1 mRNA expression. These data support the notion that the MDR PGP is one of the molecular targets through which antidepressants regulate the HPA axis.
    Neuropsychopharmacology 01/2008; 32(12):2520-9. DOI:10.1038/sj.npp.1301389 · 7.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) is a major gate-keeper at the blood-brain barrier (BBB), protecting the central nervous system from accumulation of toxic xenobiotics and drugs. In addition, MDR1 p-gp has been found to control the intracerebral access of glucocorticoid hormones and thus to modulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) system. In view of the implication of glucocorticoids in the control of behavior, we examined how acute pharmacological inhibition of MDR1 p-gp at the BBB by tariquidar (XR9576; 12 mg/kg, PO) impacts the neuroendocrine and behavioral processing of stress in C57BL/6JIcoHim inbred mice. Inhibition of MDR1 p-gp at the BBB did not alter emotional behavior at baseline. However, mice that were sensitized by water-avoidance stress, a mild psychological stressor, displayed significantly reduced anxiety-related behavior in the elevated plus-maze test when treated with tariquidar. Tariquidar, however, had no effect on stress-coping performance assessed in the forced swim test. Investigating the impact of acute MDR1 p-gp inhibition on the glucocorticoid system, we observed a significant attenuation of the mild stress-induced increase of plasma corticosterone after tariquidar administration. In order to examine whether the anti-anxiety effect of tariquidar in sensitized animals is mediated by glucocorticoids, the animals were treated with corticosterone (1mg/kg, SC) immediately after exposure to water-avoidance stress. Corticosterone caused a significant anxiolytic-like effect in this stress-related anxiety protocol, whereas tariquidar could not further enhance corticosterone's anti-anxiety effects. The current data show for the first time that pharmacological inhibition of MDR1 p-gp at the murine BBB by tariquidar alters emotional behavior and HPA axis activity. By facilitating the entry of corticosterone into the brain, tariquidar enhances feedback inhibition of the HPA system and in this way improves anxiety-related stress processing. These findings highlight a novel approach to the treatment of stress-related affective disorders in humans.
    Psychoneuroendocrinology 09/2007; 32(8-10):1028-40. DOI:10.1016/j.psyneuen.2007.08.001 · 5.59 Impact Factor