Development and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala.

Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra ACT 2601, Australia.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 08/2003; 23(17):6876-83.
Source: PubMed

ABSTRACT NMDA receptors are well known to play an important role in synaptic development and plasticity. Functional NMDA receptors are heteromultimers thought to contain two NR1 subunits and two or three NR2 subunits. In central neurons, NMDA receptors at immature glutamatergic synapses contain NR2B subunits and are largely replaced by NR2A subunits with development. At mature synapses, NMDA receptors are thought to be multimers that contain either NR1/NR2A or NR1/NR2A/NR2B subunits, whereas receptors that contain only NR1/NR2B subunits are extrasynaptic. Here, we have studied the properties of NMDA receptors at glutamatergic synapses in the lateral and central amygdala. We find that NMDA receptor-mediated synaptic currents in the central amygdala in both immature and mature synapses have slow kinetics and are substantially blocked by the NR2B-selective antagonists (1S, 2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propano and ifenprodil, indicating that there is no developmental change in subunit composition. In contrast, at synapses on pyramidal neurons in the lateral amygdala, whereas NMDA EPSCs at immature synapses are slow and blocked by NR2B-selective antagonists, at mature synapses their kinetics are faster and markedly less sensitive to NR2B-selective antagonists, consistent with a change from NR2B to NR2A subunits. Using real-time PCR and Western blotting, we show that in adults the ratio of levels of NR2B to NR2A subunits is greater in the central amygdala than in the lateral amygdala. These results show that the subunit composition synaptic NMDA receptors in the lateral and central amygdala undergo distinct developmental changes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: As an endogenous gaseous molecule, hydrogen sulfide (H2S) has attracted extensive attention because of its multiple biological effects. However, the effect of H2S on amygdala-mediated emotional memory has not been elucidated. Here, by employing Pavlovian fear conditioning, an animal model widely used to explore the neural substrates of emotion, we determined whether H2S could regulate emotional memory. It was shown that the H2S levels in the amygdala of rats were significantly elevated after cued fear conditioning. Both intra-amygdala and systemic administrations of H2S markedly enhanced amygdala-dependent cued fear memory in rats. Moreover, it was found that H2S selectively increased the surface expression and currents of GluN2B-containing NMDA receptors (NMDARs) in lateral amygdala (LA) of rats, whereas blockade of GluN2B-containing NMDARs in LA eliminated the effects of H2S to enhance amygdalar long-term potentiation (LTP) and cued fear memory. These results demonstrate that H2S can regulate amygdala-dependent emotional memory by promoting the function of GluN2B-containing NMDARs in amygdala, suggesting that H2S-associated signaling may hold potential as a new target for the treatment of emotional disorders.This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 10/2014; 132(1). DOI:10.1111/jnc.12961 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that al-enriched phosphatase 61 protein expression was significantly increased but phosphorylated N-methyl-D-aspartate receptor 2B levels were significantly decreased in the cortex and hippocampus of APPswe/PSEN1dE9 transgenic mice. Western blotting of a cell model of Alzheimer's disease consisting of amyloid-beta peptide (1-42)-treated C57BL/6 mouse cortical neurons in vitro showed that valeric acid (AP5), an N-methyl-D-aspartate receptor antagonist, significantly inhibited amyloid-beta 1-42-induced increased activity of striatal-enriched phosphatase 61. In addition, the phosphorylation of N-methyl-D-aspartate receptor 2B at Tyr1472 was impaired in amyloid-beta 1-42-treated cortical neurons, but knockdown of striatal-enriched phosphatase 61 enhanced the phosphorylation of N-methyl-D-aspartate receptor 2B. Collectively, these findings indicate that striatal-enriched phosphatase 61 can disturb N-methyl-D-aspartate receptor transport and inhibit the progression of learning and study disturbances induced by Alzheimer's disease. Thus, al-enriched phosphatase 61 may represent a new target for inhibiting the progression of Alzheimer's disease.
    Neural Regeneration Research 07/2013; 8(21):1938-47. DOI:10.3969/j.issn.1673-5374.2013.21.002 · 0.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutamatergic and GABAergic transmission undergo significant changes during adolescence. Receptors for both of these transmitters (NMDAR, and GABAA) are known to be key targets for the acute effects of ethanol in adults. The current study set out to investigate the acute effects of ethanol on both NMDAR-mediated excitatory transmission and GABAergic inhibitory transmission within the bed nucleus of the stria terminalis (BNST) across age. The BNST is an area of the brain implicated in the negative reinforcing properties associated with alcohol dependence, and the BNST plays a critical role in stress-induced relapse. Therefore, assessing the developmental regulation of ethanol sensitivity in this key brain region is important to understanding the progression of ethanol dependence. To do this, whole-cell recordings of isolated NMDAR-evoked excitatory postsynaptic currents (eEPSCs) or evoked GABAergic inhibitory postsynaptic currents (eIPSCs) were performed on BNST neurons in slices from 4- or 8-week-old male C57BL/6J mice. Ethanol (50 mm) produced greater inhibition of NMDAR-eEPSCs in adolescent mice than in adult mice. This enhanced sensitivity in adolescence was not a result of shifts in function of the GluN2B subunit of the NMDAR, measured by Ro25-6981 inhibition and decay kinetics measured across age. Adolescent mice also exhibited greater ethanol sensitivity of GABAergic transmission, as ethanol (50 mm) enhanced eIPSCs in the BNST of adolescent but not adult mice. Collectively, this work illustrates that a moderate dose of ethanol produces greater inhibition of transmission in the BNST (through greater excitatory inhibition and enhancement of inhibitory transmission) in adolescents compared to adults. Given the role of the BNST in alcohol dependence, these developmental changes in acute ethanol sensitivity could accelerate neuroadaptations that result from chronic ethanol use during the critical period of adolescence.
    Alcohol (Fayetteville, N.Y.) 10/2013; DOI:10.1016/j.alcohol.2013.08.003 · 2.04 Impact Factor

Full-text (2 Sources)

Available from
Sep 30, 2014