Monitoring the biomechanical response of individual cells under compression: a new compression device.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Medical & Biological Engineering & Computing (Impact Factor: 1.79). 08/2003; 41(4):498-503. DOI: 10.1007/BF02348096
Source: PubMed

ABSTRACT Skeletal muscle cells are sensitive to sustained compression, which can lead to the development of pressure sores. Although it is known that this type of tissue breakdown depends on the magnitude and duration of the applied load, the exact relationship between cell deformation and damage remains unclear. To gain more insight into this process, a method has been developed, that incorporates the use of a new loading device and confocal microscopy. The loading device is able to compress individual cells, either statically or dynamically, while measuring the resulting forces. Experiments can be performed under ideal environmental conditions, comparable with those of a CO2 incubator. First compression experiments on C2C12 mouse myoblasts showed the shape changes that cells undergo during static compression by the loading device. Calculations using the three-dimensional confocal images showed no change in volume and an increase in the surface area of the cell as a result of compression. The device presented here provides a useful way to monitor the biomechanical response of skeletal muscle cells during long-term compression experiments. Therefore it will contribute to the knowledge about strain-induced cell damage, as seen in pressure sores and other mechanically induced clinical conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, damage directly due to tissue deformation has gained interest in deep pressure ulcer aetiology research. It has been shown that deformation causes muscle cell damage, though the pathway is unclear. Mechanically induced skeletal muscle damage has often been associated with an increased intracellular Ca2+ concentration, e.g. in eccentric exercise (Allen et al., J Physiol 567(3):723–735, 2005). Therefore, the hypothesis was that compression leads to membrane disruptions, causing an increased Ca2+-influx, eventually leading to Ca2+ overload and cell death. Monolayers of differentiated C2C12 myocytes, stained with a calcium-sensitive probe (fluo-4), were individually subjected to compression while monitoring the fluo-4 intensity. Approximately 50% of the cells exhibited brief calcium transients in response to compression, while the rest did not react. However, all cells demonstrated a prolonged Ca2+ up-regulation upon necrosis, which induced similar up-regulations in some of the surrounding cells. Population heterogeneity is a possible explanation for the observed differences in response, and it might also become important in tissue damage development. It did not become clear however whether Ca2+-influxes were the initiators of damage.
    Experimental Mechanics 01/2009; 49(1):25-33. · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantifying three-dimensional deformation of cells under mechanical load is relevant when studying cell deformation in relation to cellular functioning. Because most cells are anchorage dependent for normal functioning, it is desired to study cells in their attached configuration. This study reports new three-dimensional morphometric measurements of cell deformation during stepwise compression experiments with a recently developed cell loading device. The device allows global, unconfined compression of individual, attached cells under optimal environmental conditions. Three-dimensional images of fluorescently stained myoblasts were recorded with confocal microscopy and analyzed with image restoration and three-dimensional image reconstruction software to quantify cell deformation. In response to compression, cell width, cross-sectional area, and surface area increased significantly with applied strain, whereas cell volume remained constant. Interestingly, the cell and the nucleus deformed perpendicular to the direction of actin filaments present along the long axis of the cell. This strongly suggests that this anisotropic deformation can be attributed to the preferred orientation of actin filaments. A shape factor was introduced to quantify the global shape of attached cells. The increase of this factor during compression reflected the anisotropic deformation of the cell.
    Annals of Biomedical Engineering 11/2004; 32(10):1443-52. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intrinsic cell wall mechanical properties of Baker's yeast (Saccharomyces cerevisiae) cells were determined. Force-deformation data from compression of individual cells up to failure were recorded, and these data were fitted by an analytical model to extract the elastic modulus of the cell wall and the initial stretch ratio of the cell. The cell wall was assumed to be homogeneous, isotropic, and incompressible. A linear elastic constitutive equation was assumed based on Hencky strains to accommodate the large stretches of the cell wall. Because of the high compression speed, water loss during compression could be assumed to be negligible. It was then possible to treat the initial stretch ratio and elastic modulus as adjustable parameters within the analytical model. As the experimental data fitted numerical simulations well up to the point of cell rupture, it was also possible to extract cell wall failure criteria. The mean cell wall properties for resuspended dried Baker's yeast were as follows: elastic modulus 185 ± 15 MPa, initial stretch ratio 1.039 ± 0.006, circumferential stress at failure 115 ± 5 MPa, circumferential strain at failure 0.46 ± 0.03, and strain energy per unit volume at failure 30 ± 3 MPa. Data on yeast cells obtained by this method and model should be useful in the design and optimization of cell disruption equipment for yeast cell processing.
    Biotechnology Progress 03/2011; 27(2):505-12. · 1.85 Impact Factor