Article

Peptides of the liver stage antigen-1 (LSA-1) of Plasmodium falciparum bind to human hepatocytes.

Fundación Instituto de Inmunologi;a de Colombia, Universidad Nacional de Colombia, Bogotá, Colombia.
Peptides (Impact Factor: 2.52). 06/2003; 24(5):647-57. DOI:10.1016/S0196-9781(03)00135-9
Source: PubMed

ABSTRACT Synthetic peptides from the liver stage antigen-1 (LSA-1) antigen sequence were used in HepG2 cell and erythrocyte binding assays to identify regions that could be involved in parasite invasion. LSA-1 protein peptides 20630 ((21)INGKIIKNSEKDEIIKSNLRY(40)), 20637 ((157)KEKLQGQQSDSEQERRAY(173)), 20638 ((174)KEKLQEQQSDLEQERLAY(190)) and 20639 (191KEKLQEQQSDLEQERRAY(207)) had high binding activity in HepG2 assays. Were located in immunogenic regions; peptide cell binding was saturable. Peptide 20630 bound specifically to 48kDa HepG2 membrane surface protein. LSA-1 peptides 20630 ((21)INGKIIKNSEKDEIIKSNLRY(40)) and 20633 ((81)DKELTMSNVKNVSQTNFKSLY(100)) showed specific erythrocyte binding activity and inhibited merozoite invasion of erythrocytes in vitro. A monkey serum prepared against LSA-1 20630 peptide analog (CGINGKNIKNAEKPMIIKSNLRGC) inhibited merozoite invasion in vitro. The data suggest LSA-1 "High Activity Binding Peptides" could play a possible role in hepatic cell invasion as well as merozoite invasion of erythrocytes.

0 0
 · 
0 Bookmarks
 · 
62 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Plasmodium falciparum apical membrane antigen 1 (AMA-1) is expressed during both the sporozoite and merozoite stage of the parasite's life cycle. The role placed by AMA-1 during sporozoite invasion of hepatocytes has not been made sufficiently clear to date. Identifying the sequences involved in binding to hepatocytes is an important step towards understanding the structural basis for sporozoite-hepatocyte interaction. Binding assays between P. falciparum AMA-1 peptides and HepG2 cell were performed in this study to identify possible AMA-1 functional regions. Four AMA-1 high activity binding peptides (HABPs) bound specifically to hepatocytes: 4310 ((74)QHAYPIDHEGAEPAPQEQNL(93)), 4316 ((194)TLDEMRHFYKDNKYVKNLDE(213)), 4321 ((294)VVDNWEKVCPRKNLQNAKFGY(313)) and 4332 ((514)AEVTSNNEVVVKEEYKDEYA(533)). Their binding to these cells became saturable and resistant to treatment with neuraminidase. Most of these peptides were located in AMA-1 domains I and III, these being target regions for protective antibody responses. These peptides interacted with 36 and 58 kDa proteins on the erythrocyte surface. Some of the peptides were found in exposed regions of the AMA-1 protein, thereby facilitating their interaction with host cells. It is thus probable that AMA-1 regions defined by the four peptides mentioned above are involved in sporozoite-hepatocyte interaction.
    Biochimie 11/2006; 88(10):1447-55. · 3.14 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A fully effective antimalarial vaccine must contain multiple proteins from the different development stages of Plasmodium falciparum parasites involved in host-cell invasion or their biologically active fragments. It must therefore include sporozoite molecules able to induce protective immunity by blocking the parasite's access to hepatic cells, and/or proteins involved in the development of this stage, amongst which are included the Liver Stage Antigen-1 (LSA-1) and the Sporozoite and Liver Stage Antigen (SALSA). Our studies have focused on the search for an association between the structure of high activity binding peptides (HABPs), including both conserved native and their modified analogues, and their ability to bind to the MHC Class II HLA-DR molecules during formation of the MHCII-peptide-TCR complex leading to inducing the appropriate immune response. These studies are part of a logical and rational strategy for developing multi-stage, multi-component, minimal subunit-based vaccines, mainly against the P. falciparum malaria.
    Biochemical and Biophysical Research Communications 06/2009; 384(4):455-60. · 2.41 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Plasmodium falciparum sporozoite infects different types of cells in a mosquito's salivary glands and human epithelial and Kuppfer cells and hepatocytes. These become differentiated later on, transforming themselves into the invasive red blood cell form, the merozoite. The ability of sporozoites to interact with different types of cells requires a wide variety of mechanisms allowing them to survive in both hosts: mobility, receptor-ligand interactions with different cellular receptors, and transformation and development into other invasive parasite forms, which are vitally important for parasite survival. Sporozoite complexity is reflected in the large quantity of proteins that can be expressed. Some of them have been extensively studied, such as CSP, TRAP, STARP, LSA-1, LSA-3, SALSA, SPECT1, SPECT2, MAEBL, and SPATR, due to their importance in infection and their potential use as vaccines. Our work has been focused on the search for the molecular mechanisms of parasite-host cellular receptor-ligand interactions by identifying amino acid sequences and the critical binding residues from these proteins relevant to parasite invasion. Once such sequences have been identified, it will be possible to modify them to induce a strong immune response against P. falciparum in the experimental Aotus monkey model. This all leads towards developing multistage, multicomponent, subunit-based vaccines that will be effective in eradicating or controlling malaria caused by P. falciparum.
    Clinical Microbiology Reviews 11/2006; 19(4):686-707. · 17.31 Impact Factor

Full-text (2 Sources)

View
14 Downloads
Available from
Nov 5, 2013