Article

Characterization of group B streptococcal glyceraldehyde-3-phosphate dehydrogenase: surface localization, enzymatic activity, and protein-protein interactions.

Department of Oral Biology, College of Dentistry, University of Florida, Gainsville, FL 32610-0424, USA.
Canadian Journal of Microbiology (Impact Factor: 1.2). 06/2003; 49(5):350-6. DOI: 10.1139/w03-042
Source: PubMed

ABSTRACT During characterization of the surface antigens of serotype III group B streptococci (GBS), a protein with an apparent M(r) of approximately 173,500 migrating on a SDS--polyacrylamide gel was found to have an N-terminal amino acid sequence identical to that of the plasmin receptor (Plr) of group A streptococci, a surface-localized glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This work begins to characterize GBS GAPDH and to assess its functional activity on the cell surface. The 1.0-kb gapC gene of GBS was amplified by PCR. plr and gapC demonstrated 87% homology. An anti-Plr monoclonal antibody reacted with GBS whole cells, suggesting GBS GAPDH is surface localized. Multiple serotypes of GBS demonstrated functional GAPDH on their surfaces. The anti-Plr monoclonal antibody recognized GBS protein bands of approximately 41 and 173.5 kDa, by Western blot. Presumably, these represent monomeric and tetrameric forms of the GAPDH molecule. GBS GAPDH was demonstrated by Western blot analysis to interact with lys- and glu-plasminogens. Fluid-phase GBS GAPDH interacted, by means of ELISA, with immobilized lys-plasminogen, glu-plasminogen, actin, and fibrinogen. Enzymatically active GAPDH, capable of binding cytoskeletal and extracellular matrix proteins, is expressed on the surface of GBS.

0 Bookmarks
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to take advantage of plasminogen and its activated form plasmin is a common mechanism used by commensal as well as pathogenic bacteria in interaction with their respective host. Hence, a huge variety of plasminogen binding proteins and activation mechanisms exist. This review solely focuses on the genus Streptococcus and, in particular, on the so-called non-activating plasminogen binding proteins. Based on structural and functional differences, as well as on their mode of surface linkaging, three groups can be assigned: M-(like) proteins, surface displayed cytoplasmatic proteins with enzymatic activities ("moonlighting proteins") and other surface proteins. Here, the plasminogen binding sites and the interaction mechanisms are compared. Recent findings on the functional consequences of these interactions on tissue degradation and immune evasion are summarized.
    Frontiers in Cellular and Infection Microbiology 01/2013; 3:85. · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Riemerella anatipestifer is the causative agent of septicemia anserum exsudativa in ducks. Its pathogenesis and virulence factors are still unclear. The glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an anchorless and multifunctional protein on the surface of several pathogenic microorganisms, is involved in virulence and adhesion. Whether homologs of GAPDH exist, and display similar characteristics in R. anatipestifer (RaGAPDH) has not been determined. In our research, the RaGAPDH activity from various R. anatipestifer isolates was confirmed. Twenty-two gapdh genes from genomic DNA of R. anatipestifer isolates were cloned and sequenced for phylogenetic analysis. The distribution of RaGAPDH in R. anatipestifer CZ2 strain was confirmed by antisera to recombinant RaGAPDH. The ability of purified RaGAPDH to bind host proteins was analyzed by solid-phase ligand-binding assay. Results revealed that all R. anatipestifer isolates showed different levels of GAPDH activity except four strains, which contained a gapdh-like gene. The gapdh of R. anatipestifer, which is located phylogenetically in the same branch as enterohemorrhagic Escherichia coli (EHEC), belonged to class I GAPDH, and encoded a 36.7-kDa protein. All RaGAPDH-encoding gene sequences from field isolates of R. anatipestifer displayed 100% homology. The RaGAPDH localized on the extracellular membrane of several R. anatipestifer strains. Further, it was released into the culture medium, and exhibited GAPDH enzyme activity. We also confirmed the binding of RaGAPDH to plasminogen and fibrinogen. These results demonstrated that GAPDH was present in R. anatipestifer, although not in all strains, and that RaGAPDH might contribute to the microorganism's virulence.
    Journal of Zhejiang University. Science. B. 09/2014; 15(9):776-787.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological moonlighting refers to proteins which express more than one function. Moonlighting proteins occur in pathogenic and commensal as well as in Gram-positive and Gram-negative bacteria. The canonical functions of moonlighting proteins are in essential cellular processes, i.e., glycolysis, protein synthesis, chaperone activity, and nucleic acid stability, and their moonlighting functions include binding to host epithelial and phagocytic cells, subepithelia, cytoskeleton as well as to mucins and circulating proteins of the immune and hemostatic systems. Sequences of the moonlighting proteins do not contain known motifs for surface export or anchoring, and it has remained open whether bacterial moonlighting proteins are actively secreted to the cell wall or whether they are released from traumatized cells and then rebind onto the bacteria. In lactobacilli, ionic interactions with lipoteichoic acids and with cell division sites are important for surface localization of the proteins. Moonlighting proteins represent an abundant class of bacterial adhesins that are part of bacterial interactions with the environment and in responses to environmental changes. Multifunctionality in bacterial surface proteins appears common: the canonical adhesion proteins fimbriae express also nonadhesive functions, whereas the mobility organelles flagella as well as surface proteases express adhesive functions.
    Biology 01/2014; 3(1):178-204.