Article

Comparative biotransformation and disposition studies of nabumetone in humans and minipigs using HPLC with UV, fluorescence and MS detection

Faculty of Chemical Technology, University of Pardubice, Pardubitz, Pardubický, Czech Republic
Journal of Pharmaceutical and Biomedical Analysis (Impact Factor: 2.83). 09/2003; 32(4-5):641-56. DOI: 10.1016/S0731-7085(03)00171-7
Source: PubMed

ABSTRACT The disposition of the non-steroidal anti-inflammatory drug (NSAID) nabumetone after a single oral dose administration of nabumetone tablets to humans and minipigs was investigated. Nabumetone is a prodrug, which is metabolized in the organism to the principal pharmacodynamically active metabolite -- 6-methoxy-2-naphthylacetic acid (6-MNA), and some other minor metabolites (carbonyl group reduction products, O-desmethylation products and their conjugates with glucuronic and sulphuric acids). Standards of the above-mentioned metabolites were prepared using simple synthetic procedures and their structures were confirmed by NMR and mass spectrometry. A simple HPLC method for the simultaneous determination of nabumetone, 6-MNA and the other metabolites was developed, validated and used for xenobiochemical and pharmacokinetic studies in humans and minipigs and for distribution studies in minipigs. Naproxen was chosen as the internal standard (I.S.), both UV (for higher concentrations) and fluorescence detection (for very low concentrations) were used. The identity of the nabumetone metabolites in biological samples was confirmed using HPLC-MS experiments. Pharmacokinetics of nabumetone, 6-MNA and 6-HNA (6-hydroxy-2-naphthylacetic acid) in human and minipig plasma was evaluated and compared. The concentration levels of nabumetone metabolites in urine, bile and synovial fluid were also evaluated.

Download full-text

Full-text

Available from: Zbynek Svoboda, Aug 26, 2015
0 Followers
 · 
107 Views
  • Source
    • "The precise role of EGG in the clinical evaluation of patients or monitoring of therapeutic response to medications , and how this test adds to the information obtained from a gastric emptying test, remain the subject of ongoing research. The pig, as a representative of the omnivore, is relatively close to man in a number of metabolic and physiological indicators (Květina et al., 1999; Nobilis et al., 2003; Anzenbacherová et al., 2003). It is not uncommon that prediction focusing on the transfer of knowledge towards human drug therapy is based on precisely this experimental species (Květina et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Surface electrogastrography (EGG) is a non-invasive means of recording gastric myoelectric activity or slow waves from cutaneous leads placed over the stomach. This paper provides a comprehensive review of preclinical EGG. Our group recently set up and worked out the methods for EGG in experimental pigs. We gained our initial experience in the use of EGG in assessment of porcine gastric myoelectric activity after volume challenge and after intragastric administration of itopride and erythromycin. The mean dominant frequency in pigs is comparable with that found in humans. EGG in experimental pigs is feasible. Experimental EGG is an important basis for further preclinical projects in pharmacology and toxicology.
    Interdisciplinary toxicology 06/2010; 3(2):53-8. DOI:10.2478/v10102-010-0011-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbonyl reduction plays a significant role in physiological processes throughout the body. Although much is known about endogenous carbonyl metabolism, much less is known about the roles of carbonyl-reducing enzymes in xenobiotic metabolism. Multiple pathways exist in humans for metabolizing carbonyl moieties of xenobiotics to their corresponding alcohols, readying these molecules for subsequent conjugation and/or excretion. When exploring carbonyl reduction clearance pathways for a drug development candidate, it is possible to assess the relative contributions of these enzymes due to their differences in subcellular locations, cofactor dependence, and inhibitor profiles. In addition, the contributions of these enzymes may be explored by varying incubation conditions, such as pH. Presently, individual isoforms of carbonyl-reducing enzymes are not widely available, either in recombinant or purified form. However, it is possible to study carbonyl reduction clearance pathways from simple experiments with commercially available reagents. This article provides an overview of carbonyl-reducing enzymes, including some kinetic data for substrates and inhibitors. In addition, an experimental strategy for the study of these enzymes in vitro is presented.
    Drug Metabolism Reviews 06/2004; 36(2):335-61. DOI:10.1081/DMR-120034154 · 6.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two carbonyl compounds, nabumetone and testosterone, were derivatized with pentafluorophenyl hydrazine (PFPH) and analyzed by atmospheric-pressure chemical-ionization mass spectrometry. The PFPH derivatives underwent dissociative electron capture in negative-ion APCI (ECAPCI) and gave intense [M-20](-) ions in the mass spectra. In positive-ion APCI, the PFPH derivatives underwent efficient protonation and gave intense [M + H](+) ions in the mass spectra. In CID, the major product ions of the [M-20](-) ions in ECAPCI corresponded to the partial moiety of PFPH. In contrast, the major product ions of [M + H](+) corresponded to the partial moiety of the analyte. By using selected reaction monitoring (SRM) detection, low pg of nabumetone (1 pg) and testosterone (7 pg) could be detected in both ECAPCI and positive-ion APCI. In comparison with the detection limits (SRM) of the underivatized analytes, use of the PFPH derivatives resulted in 2500-fold and 35-fold sensitivity enhancements for nabumetone and testosterone, respectively. The PFPH derivatives were applied to the analysis of nabumetone and testosterone in human plasma by both ECAPCI and positive-ion APCI and were found to enable detection of 0.1 ng mL(-1) nabumetone in spiked plasma. For testosterone, endogenous testosterone in female plasma was detected in both ECAPCI and positive-ion APCI.
    Analytical and Bioanalytical Chemistry 01/2005; 380(7-8):891-7. DOI:10.1007/s00216-004-2877-6 · 3.58 Impact Factor
Show more