Article

Modification of the functional capacity of sarcoplasmic reticulum membranes in patients suffering from chronic fatigue syndrome.

Laboratorio Interuniversitario di Miologia, Università 'G. d'Annunzio', Nuovo Polo Didattico, 66013 Chieti Scalo, Italy.
Neuromuscular Disorders (Impact Factor: 3.13). 09/2003; 13(6):479-84. DOI: 10.1016/S0960-8966(03)00042-7
Source: PubMed

ABSTRACT In chronic fatigue syndrome, several reported alterations may be related to specific oxidative modifications in muscle. Since sarcoplasmic reticulum membranes are the basic structures involved in excitation-contraction coupling and the thiol groups of Ca(2+) channels of SR terminal cisternae are specific targets for reactive oxygen species, it is possible that excitation-contraction coupling is involved in this pathology. We investigated the possibility that abnormalities in this compartment are involved in the pathogenesis of chronic fatigue syndrome and consequently responsible for characteristic fatigue. The data presented here support this hypothesis and indicate that the sarcolemmal conduction system and some aspects of Ca(2+) transport are negatively influenced in chronic fatigue syndrome. In fact, both deregulation of pump activities (Na(+)/K(+) and Ca(2+)-ATPase) and alteration in the opening status of ryanodine channels may result from increased membrane fluidity involving sarcoplasmic reticulum membranes.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fatigue is a common symptom of numerous acute and chronic diseases, including myalgic encephalomyelitis/chronic fatigue syndrome, multiple sclerosis, heart failure, cancer, and many others. In these multi-system diseases the physiological determinants of enhanced fatigue encompass a combination of metabolic, neurological, and myofibrillar adaptations. Previous research studies have focused on adaptations specific to skeletal muscle and their role in fatigue. However, most have neglected the contribution of physical inactivity in assessing disease syndromes, which, through deconditioning, likely contributes to symptomatic fatigue. In this commentary, we briefly review disease-related muscle phenotypes in the context of whether they relate to the primary disease or whether they develop secondary to reduced physical activity. Knowledge of the etiology of the skeletal muscle adaptations in these conditions and their contribution to fatigue symptoms is important for understanding the utility of exercise rehabilitation as an intervention to alleviate the physiological precipitants of fatigue.
    Biology 09/2014; 3(3):606-622. DOI:10.3390/biology3030606
  • [Show abstract] [Hide abstract]
    ABSTRACT: Muscle regeneration involves the activation of satellite cells, is regulated at the genetic and epigenetic levels, and is strongly influenced by gene activation and environmental conditions. The aim of this study was to determine whether the overexpression of mIGF-1 can modify functional features of satellite cells during the differentiation process, particularly in relation to modifications of intracellular Ca2+ handling. Satellite cells were isolated from wild-type and MLC/mIGF-1 transgenic mice. The cells were differentiated in vitro, and morphological analyses, intracellular Ca2+ measurements, and ionic current recordings were performed. mIGF-1 overexpression accelerates satellite cell differentiation and promotes myotube hypertrophy. In addition, mIGF-1 overexpression-induced potentiation of myogenesis triggers both quantitative and qualitative changes to the control of intracellular Ca2+ handling. In particular, the differentiated MLC/mIGF-1 transgenic myotubes have reduced velocity and amplitude of intracellular Ca2+ increases after stimulation with caffeine, KCl and acetylcholine. This appears to be due, at least in part, to changes in the physico-chemical state of the sarcolemma (increased membrane lipid oxidation, increased output currents) and to increased expression of dihydropyridine voltage-operated Ca2+ channels. Interestingly, extracellular ATP and GTP evoke intracellular Ca2+ mobilization to greater extents in the MLC/mIGF-1 transgenic satellite cells, compared to the wild-type cells. These data suggest that these MLC/mIGF-1 transgenic satellite cells are more sensitive to trophic stimuli, which can potentiate the effects of mIGF-1 on the myogenic programme.
    PLoS ONE 09/2014; 9(9):e107753. DOI:10.1371/journal.pone.0107753 · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format

Full-text (2 Sources)

Download
20 Downloads
Available from
May 20, 2014