Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials.

Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.
Journal of Colloid and Interface Science (Impact Factor: 3.17). 08/2003; 263(2):449-53. DOI: 10.1016/S0021-9797(03)00322-9
Source: PubMed

ABSTRACT Gold nanolayer-encapsulated silica particles whose optical resonance is located in 750-900 nm spectral region were synthesized by combining Sn (tin)-surface seeding and a shell growing process. The synthesized composite particles can be potentially used in wide biological fields, due to biocompatibility and a well-known bioconjugation technique of gold layer. Sn atoms, which can act not only as a catalytic surface for reduction of gold but also as a linker between silica surface and gold nanoparticles, were chemically deposited on hydroxylated silica particles. Then, we introduced another reductant with gold chloride in order to produce a multilayer of Au shell. In the process, Au shells grew by the reduction of additional gold ions on the Sn-functionalized silica surface and resulted in the subsequent coalescence and growth of the deposited gold nanoparticles. Finally, a complete gold nanoshell was formed on the silica surface by the one-step method, without a repeated coating process. The deposition of a gold nanolayer on the silica particles was easily controlled by the concentration ratio of Sn-functionalized silica particles and gold chloride solutions. Transmission electron microscopy (TEM) images and optical extinction spectra clearly showed that gold nanolayers were successfully deposited on the silica surface by the novel method. As the gold colloids attached on the silica surface grew, their optical plasmon peak became red-shifted until complete a gold shell was formed. After the gold shell was completed, the optical plasmon resonance became blue-shifted and the extinction spectra were functions of a relative ratio of the core to shell thickness.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the fact that polystyrene (PS) spheres have been developed as polymeric carriers or matrices for various biomedical applications, the synthesis of PS spheres is time-consuming. This work describes the fabrication of a uniform PS sphere, coated with silver nanoparticles (Ag-PS), by simultaneous photoinduced polymerization and reduction fabricated using x-rays in aqueous solution without any initiator. The solution contains only styrene, silver ions (Ag(+)), and poly(vinyl pyrrolidone) (PVP) as a stabilizer. The proposed mechanism of the formation of the Ag-PS nanocomposite spheres involves the generation of radicals in the aqueous solution to induce PS polymerization and the reduction of Ag. The distribution of the sizes of the core PS spheres in the Ag-PS nanocomposite spheres was systematically examined as a function of irradiation time, concentration of styrene, and amount of PVP. Ag-PS nanocomposite spheres exhibit antimicrobial activity against bacteria (Escherichia coli and Staphylococcus aureus). Additionally, the cationic (vinylbenzyl)trimethylammonium (TMA) monomer was photopolymerized to form positively charged TMA-PS spheres as gene carriers with uniquely low cytotoxicity. Given these design advantages, the method proposed herein is simpler than typical approaches for synthesizing PS spheres with functionalized groups and PS spheres coated with Ag nanoparticles.
    Nanotechnology 06/2012; 23(25):255103. · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The area of colloidal photonic crystal research has attracted enormous attention in recent years as a result of the potential of such materials to provide the means of fabricating new or improved photonic devices. As an area where chemistry still predominates over engineering the field is still in its infancy in terms of finding real applications being limited by ease of fabrication, reproducibility and 'quality'- for example the extent to which ordered structures may be prepared over large areas. It is our contention that the Langmuir-Blodgett assembly method when applied to colloidal particles of silica and perhaps other materials, offers a way of overcoming these issues. To this end the assembly of silica and other particles into colloidal photonic crystals using the Langmuir-Blodgett (LB) method is described and some of the numerous papers on this topic, which have been published, are reviewed. It is shown that the layer-by-layer control of photonic crystal growth afforded by the LB method allows for the fabrication of a range of novel, layered photonic crystals that may not be easily assembled using any other approach. Some of the more interesting of these structures, including so-called heterostructured photonic crystals comprising of layers of spheres having different diameters are presented and their optical properties described. Finally, we offer our comments as to future applications of this interesting technology.
    Advanced Materials 08/2010; 22(29):3104-24. · 14.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metallic nanoshells, which are plasmonic nanostructures having alternating layers of dielectric and metal, exhibit a notable structural tunability of the plasmon frequencies. This interesting feature has been exploited for a myriad of applications. In this chapter, along with some synthesis approaches, we discuss the origin of the structural tunability and application potentials of these novel nanostructures in fields such as surface-enhanced Raman scattering, medicine, and photonics.
    01/2013: pages 99-149;


Available from