Vacuolar myelinopathy in waterfowl from a North Carolina impoundment.

US Fish and Wildlife Service, Ecological Services, Raleigh, North Carolina 27636-3726, USA.
Journal of wildlife diseases (Impact Factor: 1.27). 05/2003; 39(2):412-7.
Source: PubMed

ABSTRACT Vacuolar myelinopathy was confirmed by light and electron microscopic examination of mallards (Anas platyrhynchos), ring-necked ducks (Aythya collaris), and buffleheads (Bucephala albeola) collected during an epizootic at Lake Surf in central North Carolina (USA) between November 1998 and February 1999. Clinical signs of affected birds were consistent with central nervous system impairment of motor function (incoordination, abnormal movement and posture, weakness, paralysis). This is the first report of this disease in wild waterfowl (Anseriformes).

0 0
  • 01/2008: pages 431 - 455; , ISBN: 9780470344668
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A number of factors were identified as causes of mortality in 254 (59%) of 431 sea ducks submitted for necropsy at the USGS-National Wildlife Health Center, Madison, Wisconsin from 1975 until 2003. Bacteria causing large outbreaks of mortality were Pasteurella multocida and Clostridium botulinum Type E. Starvation was responsible for large mortality events as well as sporadic deaths of individuals. Lead toxicity, gunshot and exposure to petroleum were important anthropogenic factors. Other factors that caused mortality were avian pox virus, bacteria (Clostridium botulinum Type C, Riemerella anatipestifer and Clostridium perfringens), fungi (Aspergillus fumigatus and an unidentified fungus), protozoans (unidentified coccidia), nematodes (Eustrongylides spp.), trematodes (Sphaeridiotrema globulus and Schistosoma spp.), acanthocephalans (Polymorphus spp.), predation, cyanide and trauma (probably due to collisions). There were also a number of novel infectious organisms in free-living sea ducks in North America, which were incidental to the death, including avipoxvirus and reovirus, bacteria Mycobacterium avium, protozoans Sarcocystis sp. and nematodes Streptocara sp. Apart from anthropogenic factors, the other important mortality factors listed here have not been studied as possible causes for the decline of sea ducks in North America.
    Waterbirds 01/2009; · 0.92 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The continental scaup population (Lesser [Aythya affinis] and Greater [A. marila ] combined) has declined markedly since 1978. One hypothesis for the population decline states that reproductive success has decreased because female scaup are arriving on breeding areas in poorer body condition than they did historically (i.e. spring condition hypothesis). We tested one aspect of that hypothesis by comparing body mass and nutrient reserves (lipid, protein, and mineral) of Lesser Scaup at four locations (Louisiana, Illinois, Minnesota, and Manitoba) between the 1980s and 2000s. We found that mean body mass and lipid and mineral reserves of females were 80.0, 52.5, and 3.0 g higher, respectively, in the 2000s than in the 1980s in Louisiana; similarly, body mass and lipid and mineral reserves of males were 108.8, 72.5, and 2.5 g higher, respectively. In Illinois, mean body mass and lipid reserves of females were 88.6 and 56.5 g higher, respectively, in the 2000s than in the 1980s; similarly, body mass and lipid and mineral reserves of males were 80.6, 76.0, and 2.7 g higher, respectively. Mean body mass of females were 58.5 and 58.9 g lower in the 2000s than in the 1980s in Minnesota and Manitoba, respectively; mean body mass of males, similarly, were 40.7 g lower in Minnesota. Mean lipid reserves of females in the 2000s were 28.8 and 27.8 g lower than those in the 1980s in Minnesota and Manitoba, respectively. Mean mineral reserves of females in the 2000s were 3.2 g lower than those in the 1980s in Manitoba. Consequently, females arriving to breed in Manitoba in the 2000s had accumulated lipid reserves for 4.1 fewer eggs and mineral reserves for 0.8 fewer eggs than those arriving to breed there in the 1980s. Accordingly, our results are consistent with the spring condition hypothesis and suggest that female body condition has declined, as reflected by decreases in body mass, lipids, and mineral reserves that could cause reductions in reproductive success and ultimately a population decline.
    The Auk 01/2009; · 2.40 Impact Factor


Available from