Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network.

Whitehead Institute for Biomedical Research. MIT Department of Biology, Cambridge, Massachusetts 02142, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 10/2003; 23(17):5989-99. DOI: 10.1128/MCB.23.17.5989-5999.2003
Source: PubMed

ABSTRACT The retinal determination (RD) gene network encodes a group of transcription factors and cofactors necessary for eye development. Transcriptional and posttranslational regulation of RD family members is achieved through interactions within the network and with extracellular signaling pathways, including epidermal growth factor receptor/RAS/mitogen-activated protein kinase (MAPK), transforming growth factor beta/DPP, Wingless, Hedgehog, and Notch. Here we present the results of structure-function analyses that reveal novel aspects of Eyes absent (EYA) function and regulation. We find that the conserved C-terminal EYA domain negatively regulates EYA transactivation potential, and that GROUCHO-SINE OCULIS (SO) interactions provide another mechanism for negative regulation of EYA-SO target genes. We have mapped the transactivation potential of EYA to an internal proline-, serine-, and threonine-rich region that includes the EYA domain 2 (ED2) and two MAPK phosphorylation consensus sites and demonstrate that activation of the RAS/MAPK pathway potentiates transcriptional output of EYA and the EYA-SO complex in certain contexts. Drosophila S2 cell two-hybrid assays were used to describe a novel homotypic interaction that is mediated by EYA's N terminus. Our data suggest that EYA requires homo- and heterotypic interactions and RAS/MAPK signaling responsiveness to ensure context-appropriate RD gene network activity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The retinal determination gene network comprises a collection of transcription factors that respond to multiple signaling inputs to direct Drosophila eye development. Previous genetic studies have shown that nemo (nmo), a gene encoding a proline-directed serine/threonine kinase, can promote retinal specification through interactions with the retinal determination gene network, although the molecular point of cross-talk was not defined. Here, we report that the Nemo kinase positively and directly regulates Eyes absent (Eya). Genetic assays show that Nmo catalytic activity enhances Eya-mediated ectopic eye formation and potentiates induction of the Eya-Sine oculis (So) transcriptional targets dachshund and lozenge. Biochemical analyses demonstrate that Nmo forms a complex with and phosphorylates Eya at two consensus mitogen-activated protein kinase (MAPK) phosphorylation sites. These same sites appear crucial for Nmo-mediated activation of Eya function in vivo. Thus, we propose that Nmo phosphorylation of Eya potentiates its transactivation function to enhance transcription of Eya-So target genes during eye specification and development.
    Developmental Biology 02/2012; 365(1):267-76. DOI:10.1016/j.ydbio.2012.02.030 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While genes involved in the differentiation of the mechanosensory hair cells and the neurons innervating them have been identified, genes involved in balancing their relative numbers remain unknown. Six1a plays a dual role by promoting hair cell fate while inhibiting neuronal fate in these two lineages. Genes homologous to six1a act as either transcriptional activators or repressors, depending on the partners with which they interact. By assaying the in vivo and in vitro effects of mutations in presumptive protein-protein interacting and DNA-binding domains of Six1a, we show that, in the developing zebrafish inner ear, Six1a promotes hair cell fate by acting as a transcriptional activator and inhibits neuronal fate by acting as a transcriptional repressor. We also identify several potential partners for Six1a that differ between these two lineages. The dual role of Six1a in the developing otocyst provides a mechanism for balancing the relative number of hair cells and neurons during organogenesis of the inner ear.
    Developmental Biology 09/2011; 357(1):191-201. DOI:10.1016/j.ydbio.2011.06.035 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eyes absent (EYA) has tyrosine- and threonine-phosphatase activities in their C-terminal and N-terminal regions, respectively. Using various mutants of mouse EYA3, we showed that the 68-amino acid domain between positions 53 and 120 was necessary and sufficient for its threonine-phosphatase activity. Point mutations were then introduced, and residues Cys-56, Tyr-77, His-79, and Tyr-90 were essential for the EYA3s threonine-phosphatase. The 68-amino acid domain is not well conserved among the four mouse EYA members, but is evolutionally highly conserved in the orthologous EYA members of different species, suggesting that the threonine-phosphatase of EYA3 has a function distinct from that of the other EYAs.
    FEBS letters 08/2011; 585(17):2714-9. DOI:10.1016/j.febslet.2011.07.029 · 3.34 Impact Factor


Available from