Article

Proteasomal targeting of a viral oncogene abrogates oncogenic phenotype and enhances immunogenicity.

Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Rd, Brisbane, Australia 4029.
Blood (Impact Factor: 9.78). 01/2004; 102(13):4535-40. DOI: 10.1182/blood-2003-03-0870
Source: PubMed

ABSTRACT The ability of viral or mutated cellular oncogenes to initiate neoplastic events and their poor immunogenicity have considerably undermined their potential use as immunotherapeutic tools for the treatment of human cancers. Using an Epstein-Barr virus-encoded oncogene, latent membrane protein 1 (LMP1), as a model, we report a novel strategy that both deactivates cellular signaling pathways associated with the oncogenic phenotype and reverses poor immunogenicity. We show that cotranslational ubiquitination combined with N-end rule targeting of LMP1 enhanced the intracellular degradation of LMP1 and total blockade of LMP1-mediated nuclear factor-kappaB (NF-kappaB) and signal transducer and activator of transcription (STAT) activation in human cells. In addition, although murine cells expressing LMP1 were uniformly tumorigenic, this oncogenicity was completely abrogated by covalent linkage of LMP1 with ubiquitin, while an enhanced CD8+ T cell response to a model epitope fused to the C-terminus of LMP1 was observed following immunization with ubiquitinated LMP1. These observations suggest that proteasomal targeting of tumor-associated oncogenes could be exploited therapeutically by either gene therapy or vaccination.

0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitous Epstein Barr virus (EBV) exploits human B-cell development to establish a persistent infection in ∼90% of the world population. Constitutive activation of NF-κB by the viral oncogene latent membrane protein 1 (LMP1) has an important role in persistence, but is a risk factor for EBV-associated lymphomas. Here, we demonstrate that endogenous LMP1 escapes degradation upon accumulation within intraluminal vesicles of multivesicular endosomes and secretion via exosomes. LMP1 associates and traffics with the intracellular tetraspanin CD63 into vesicles that lack MHC II and sustain low cholesterol levels, even in 'cholesterol-trapping' conditions. The lipid-raft anchoring sequence FWLY, nor ubiquitylation of the N-terminus, controls LMP1 sorting into exosomes. Rather, C-terminal modifications that retain LMP1 in Golgi compartments preclude assembly within CD63-enriched domains and/or exosomal discharge leading to NF-κB overstimulation. Interference through shRNAs further proved the antagonizing role of CD63 in LMP1-mediated signalling. Thus, LMP1 exploits CD63-enriched microdomains to restrain downstream NF-κB activation by promoting trafficking in the endosomal-exosomal pathway. CD63 is thus a critical mediator of LMP1 function in- and outside-infected (tumour) cells.
    The EMBO Journal 06/2011; 30(11):2115-29. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-terminal stable in frame fusion of ubiquitin (Ub) has been shown to target the fusion protein for proteasomal degradation. This pathway, called the Ub fusion degradation (UFD), might also elevate MHC class I (MHC-I) antigen presentation of specific antigens. The UFD, mainly studied on cytosolic proteins, has been described to be mediated by polyubiquitination of specific lysine residues within the fused Ub moiety. Using the well characterized melanoma-specific antigen MelanA as a model protein, we analyzed the requirements of the UFD for ubiquitination and proteasomal degradation of a transmembrane protein. Here we show that fusion of the non-cleavable Ub(G76V) variant to the N-terminus of MelanA results in rapid proteasomal degradation via the endoplasmic reticulum-associated degradation (ERAD) pathway and, consequently, leads to an increased MHC-I antigen presentation. While lysine residues within Ub are dispensable for these effects, the presence of one single lysine residue, irrespectively of its location along the fusion protein, is sufficient to induce degradation of MelanA. These results show that the ubiquitination, ER to cytosol relocation and proteasomal degradation of a transmembrane protein can be increased by N-terminal fusion of Ub at the presence of at least one, position independent lysine residue. These findings are in contrast to the conventional wisdom concerning the UFD and indicate a new concept to target a protein into the ubiquitin-proteasome system (UPS) and thus for enhanced MHC-I antigen presentation, and might open up new possibilities in the development of tumor vaccines.
    PLoS ONE 01/2013; 8(2):e55567. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous peptides presented by MHC class I (MHC-I) molecules are mostly derived from de novo synthesized, erroneous proteins, so-called defective ribosomal products (DRiPs), which are rapidly degraded via the ubiquitin-proteasome pathway. We have previously shown that the HIV-1 Gag protein represents a bona fide substrate for the DRiP pathway and that the amount of Gag-DRiPs can be enhanced by the introduction of an N-end rule degradation signal, leading to increased MHC-I presentation and immunogenicity of Gag. Based on these findings, we sought to identify a naturally occurring sequence motif within Gag that regulates its entry into the DRiP pathway. As the PTAP late assembly domain motif in the C-terminal p6 domain of Gag has been shown to negatively regulate the ubiquitination of Gag, we analyzed the correlation between ubiquitination and MHC-I presentation of PTAP-deficient Gag. Intriguingly, mutation of PTAP not only reduces the release of virus-like particles, but also increases ubiquitination of Gag and, consistently, enhances MHC-I presentation of a Gag-derived epitope. Although the half-life of the PTAP mutant was only mildly reduced, the entry into the DRiP pathway was significantly increased, as demonstrated by short-term pulse-chase analyses under proteasome inhibition. Collectively, these results indicate that, besides driving virus release, the PTAP motif regulates the entry of Gag into the DRiP pathway and, thus, into the MHC-I pathway. Although there are no naturally occurring PTAP mutants of HIV-1, mutations of PTAP might enhance the immunogenicity of Gag and, thus, be considered for the improvement of vaccine development.
    The Journal of Immunology 05/2011; 186(10):5706-18. · 5.52 Impact Factor

Full-text (2 Sources)

Download
13 Downloads
Available from
May 16, 2014