Article

Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the Suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules

Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
Endocrinology (Impact Factor: 4.64). 10/2003; 144(9):3742-8. DOI: 10.1210/en.2003-0435
Source: PubMed

ABSTRACT In birds, the mediobasal hypothalamus (MBH) including the infundibular nucleus, inferior hypothalamic nucleus, and median eminence is considered to be an important center that controls the photoperiodic time measurement. Here we show expression patterns of circadian clock genes in the MBH, putative suprachiasmatic nucleus (SCN), and pineal gland, which constitute the circadian pacemaker under various light schedules. Although expression patterns of clock genes were different between long and short photoperiod in the SCN and pineal gland, the results were not consistent with those under night interruption schedule, which causes testicular growth. These results indicate that different expression patterns of the circadian clock genes in the SCN and pineal gland are not an absolute requirement for encoding and decoding of seasonal information. In contrast, expression patterns of clock genes in the MBH were stable under various light conditions, which enables animals to keep a steady-state photoinducible phase.

1 Follower
 · 
201 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper reviews current knowledge of photoperiod control of GnRH-1 secretion and proposes a model in which two processes act together to regulate GnRH1 secretion. Photo-induction controls GnRH1 secretion and is directly related to prevailing photoperiod. Photo-inhibition, a longer term process, acts through GnRH1 synthesis. It progresses each day during daylight hours, but reverses during darkness. Thus, photo-inhibition gradually increases when photoperiods exceed 12 hours, and reverses under shorter photoperiods. GnRH1 secretion on any particular day is the net result of these two processes acting in tandem. The only difference between species is their sensitivity to photo-inhibition. This can potentially explain differences in timing and duration of breeding seasons between species, why some species become absolutely photorefractory and others relatively photorefractory, why breeding seasons end at the same time at different latitudes within species, and why experimental protocols sometimes produce results that appear counter to what happens naturally.
    Frontiers in Neuroendocrinology 09/2014; DOI:10.1016/j.yfrne.2014.08.004 · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extraretinal photoreceptors located within the medio-basal hypothalamus regulate the photoperiodic control of seasonal reproduction in birds. An action spectrum for this response describes an opsin photopigment with a λmax of ∼492nm. Beyond this however, the specific identity of the photopigment remains unresolved. Several candidates have emerged including rod-opsin; melanopsin (OPN4); neuropsin (OPN5); and vertebrate ancient (VA) opsin. These contenders are evaluated against key criteria used routinely in photobiology to link orphan photopigments to specific biological responses. To date, only VA opsin can easily satisfy all criteria and we propose that this photopigment represents the prime candidate for encoding daylength and driving seasonal breeding in birds. We also show that VA opsin is co-expressed with both gonadotropin-releasing hormone (GnRH) and arginine-vasotocin (AVT) neurons. These new data suggest that GnRH and AVT neurosecretory pathways are endogenously photosensitive and that our current understanding of how these systems are regulated will require substantial revision. Copyright © 2014. Published by Elsevier Inc.
    Frontiers in Neuroendocrinology 11/2014; DOI:10.1016/j.yfrne.2014.11.001 · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major challenge in the field of circadian rhythms is to understand the neural mechanisms controlling the oppositely phased temporal organization of physiology and behaviour between night- and day-active animals. Most identified components of the master clock in the suprachiasmatic nuclei (SCN), called circadian genes, display similar oscillations according to the time of day, independent of the temporal niche. This has led to the predominant view that the switch between night- and day-active animals occurs downstream of the master clock, likely also involving differential feedback of behavioral cues onto the SCN. The Barbary striped grass mouse, Lemniscomys barbarus is known as a day-active Muridae. Here we show that this rodent, when housed in constant darkness, displays a temporal rhythmicity of metabolism matching its diurnal behaviour (i.e., high levels of plasma leptin and hepatic glycogen during subjective midday and dusk, respectively). Regarding clockwork in their SCN, these mice show peaks in the mRNA profiles of the circadian gene Period1 (Per1) and the clock-controlled gene Vasopressin (Avp), which occur during the middle and late subjective day, respectively, in accordance with many observations in both diurnal and nocturnal species. Strikingly, expression of the circadian gene Clock in the SCN of the Barbary striped grass mouse was not constitutive as in nocturnal rodents, but it was rhythmic. As this is also the case for the other diurnal species investigated in the literature (sheep, marmoset, and quail), a hypothesis is that the transcriptional control of Clock within the SCN participates in the mechanisms underlying diurnality and noctumality.
    Brain Research 11/2014; 1594. DOI:10.1016/j.brainres.2014.10.063 · 2.83 Impact Factor