Ca2+ channel-sarcoplasmic reticulum coupling: a mechanism of arterial myocyte contraction without Ca2+ influx.

Laboratorio de Investigaciones Biomédicas, Departamento de Fisiología and Hospital Universitario Virgen del Rocío, Universidad de Sevilla, E-41013, Seville, Spain.
The EMBO Journal (Impact Factor: 9.82). 10/2003; 22(17):4337-45. DOI: 10.1093/emboj/cdg432
Source: PubMed

ABSTRACT Contraction of vascular smooth muscle cells (VSMCs) depends on the rise of cytosolic [Ca2+] owing to either Ca2+ influx through voltage-gated Ca2+ channels of the plasmalemma or receptor-mediated Ca2+ release from the sarcoplasmic reticulum (SR). We show that voltage-gated Ca2+ channels in arterial myocytes mediate fast Ca2+ release from the SR and contraction without the need of Ca2+ influx. After sensing membrane depolarization, Ca2+ channels activate G proteins and the phospholipase C-inositol 1,4,5-trisphosphate (InsP3) pathway. Ca2+ released through InsP3-dependent channels of the SR activates ryanodine receptors to amplify the cytosolic Ca2+ signal. These observations demonstrate a new mechanism of signaling SR Ca(2+)-release channels and reveal an unexpected function of voltage-gated Ca2+ channels in arterial myocytes. Our findings may have therapeutic implications as the calcium-channel-induced Ca2+ release from the SR can be suppressed by Ca(2+)-channel antagonists.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review is focused on the effects of obesity on function and expression of potassium (K) channels in the vasculature. Five families of K channels have been identified in the vascular wall, calcium-activated K (KCa) channels, inward-rectifier K (KIR) channels, ATP-sensitive K (KATP) channels, voltage-gated K (KV) channels and two-pore domain K (K2P) channels. In endothelial cells (EC) and vascular smooth muscle cells (VSMC) opening of K channels leads to hyperpolarisation followed by vasodilatation. In some vascular beds of animal models of obesity, vasodilatation mediated by KCa3.1 and KCa2.3 channels has been reported to remain unaltered or even increased, whereas vasodilatation involving KCa1.1 channel has consistently been reported to be impaired. Changes in expression and function of KIR and KATP channels have also been associated with impaired vasodilatation in animal models of obesity, and therefore activation of these channels may improve endothelial function and reduce the risk of major cardiovascular events. Expression of KV7.x channels is downregulated in small arteries from hypertensive animals and it would be interesting to assess whether these channels contribute to development of hypertension in obese patients. However, the role of KV7.x and K2P channels in regulation of blood pressure remains unexplored compared to other K channels. In conclusion, obesity and metabolic syndrome alter expression, function and sensitivity of vascular K channel subtypes causing smooth muscle dysfunction and probably endothelial dysfunction which makes these patients particularly prone to premature cardiovascular disease. Modulation of K channel activity by use of openers of e.g. KCa and KATP channels may also be attractive to counteract vascular dysfunction observed in obesity.
    Current Vascular Pharmacology 01/2014; 12(3):438-52. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: KCl-evoked sustained contraction requires L-type Ca(2+) channel activation, metabotropic Ca(2+) release from the sarcoplasmic reticulum (mechanism denoted Calcium Channel-Induced Ca(2+) Release) and RhoA/Rho associated kinase activation. Although high K(+) solutions are used to depolarize myocytes, these solutions can stimulate other signaling pathways such as those triggered by the activation of muscarinic and purinergic receptors. The present study examines the functional role of Calcium Channel-Induced Ca(2+) Release under pharmacological activation of L-type Ca(2+) channel without significant membrane depolarization. It also analyzes the role of the "steady-state" Ca(2+) influx through L-type Ca(2+) channels on myocyte sustained contraction. Measurement of contractility in arterial rings was done on a vessel myograph. Membrane potential was measured by fluorescence techniques loading intact myocytes with a membrane potential sensitive dye, and a reversible permeabilization method was used to load myocytes in intact arteries with GDPβS and Ca(v)1.2 siRNA. Application of an L-type Ca(2+) channel agonist, without effect on membrane potential, evoked sustained contraction via G-protein induced Ca(2+) release from the sarcoplasmic reticulum and RhoA/Rho associated kinase activation. Tonic myocyte contractions mediated by L-type Ca(2+) channel activation required sustained Ca(2+) influx through the channels and Ca(2+) uptake by the sarcoplasmic reticulum. Because L-type Ca(2+) channels participate in numerous pathophysiological processes mediated by maintained arterial contraction, our data could help to optimize therapeutic treatment of arterial vasospasm.
    European journal of pharmacology 10/2012; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background : There is growing evidence suggesting involvement of L-type voltage-gated Ca2+ channels (VGCCs) in purinergic sig-naling mechanisms. However, detailed interplay between VGCCs and P2X receptors in intracellular Ca2+ mobilization is not well understood. This study examined relative contribution of the Ca2+ entry mechanisms and induced by this entry Ca2+ release from the intracellular stores engaged by activation of P2X receptors in smooth muscle cells (SMCs) from the guinea-pig small mesenteric ar-teries. Methods : P2X receptors were stimulated by the brief local application of ab-meATP and changes in [Ca2+]i were monitored in fluo-3 loaded SMCs using fast x-y confocal Ca2+ imaging. The effects of the block of L-type VGCCs and/or depletion of the intracel-lular Ca2+ stores on ab-meATP-induced [Ca2+]i transients were analyzed. Results : Our analysis revealed that Ca2+ entry via L-type VGCCs is augmented by the Ca2+ -induced Ca2+ release significantly more than Ca2+ entry via P2X receptors, even though net Ca2+ influxes provided by the two mechanisms are not significantly different. Conclusions : Thus, arterial SMCs upon P2X receptor activation employ an effective mechanism of the Ca2+ signal amplification, the major component of which is the Ca2+ release from the SR activated by Ca2+ influx via L-type VGCCs. This signaling pathway is engaged by depolarization of the myocyte membrane resulting from activation of P2X receptors, which, being Ca2+ permeable, per se form less effective Ca2+ signaling pathway. This study, therefore, rescales potential targets for therapeutic intervention in puriner-gic control of vascular tone.
    Pharmacological reports: PR 01/2013; 65:152-163. · 1.97 Impact Factor


Available from