Article

Ca2+ channel-sarcoplasmic reticulum coupling: a mechanism of arterial myocyte contraction without Ca2+ influx.

Laboratorio de Investigaciones Biomédicas, Departamento de Fisiología and Hospital Universitario Virgen del Rocío, Universidad de Sevilla, E-41013, Seville, Spain.
The EMBO Journal (Impact Factor: 10.75). 10/2003; 22(17):4337-45. DOI: 10.1093/emboj/cdg432
Source: PubMed

ABSTRACT Contraction of vascular smooth muscle cells (VSMCs) depends on the rise of cytosolic [Ca2+] owing to either Ca2+ influx through voltage-gated Ca2+ channels of the plasmalemma or receptor-mediated Ca2+ release from the sarcoplasmic reticulum (SR). We show that voltage-gated Ca2+ channels in arterial myocytes mediate fast Ca2+ release from the SR and contraction without the need of Ca2+ influx. After sensing membrane depolarization, Ca2+ channels activate G proteins and the phospholipase C-inositol 1,4,5-trisphosphate (InsP3) pathway. Ca2+ released through InsP3-dependent channels of the SR activates ryanodine receptors to amplify the cytosolic Ca2+ signal. These observations demonstrate a new mechanism of signaling SR Ca(2+)-release channels and reveal an unexpected function of voltage-gated Ca2+ channels in arterial myocytes. Our findings may have therapeutic implications as the calcium-channel-induced Ca2+ release from the SR can be suppressed by Ca(2+)-channel antagonists.

0 Followers
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ryanodine receptors (RyR) are Ca(2+)-sensitive ion channels in the sarcoplasmic reticulum (SR) membrane, and are important effectors of SR Ca(2+) release and smooth muscle excitation-contraction coupling. While the relationship between RyR activation and contraction is well characterized in arteries, little is known about the role of RyR in excitation-contraction coupling in veins. We hypothesized that RyR are present and directly coupled to contraction in rat aorta (RA) and vena cava (RVC). RA and RVC expressed mRNA for all 3 RyR subtypes, and immunofluorescence showed RyR protein was present in RA and RVC smooth muscle cells. RA and RVC rings contracted when Ca(2+) was re-introduced after stores depletion with thapsigargin (1μM), indicating both tissues contained intracellular Ca(2+) stores. To assess RyR function, contraction was then measured in RA and RVC exposed to the RyR activator caffeine (20mM). In RA, caffeine caused contraction that was attenuated by the RyR antagonists ryanodine (10μM) and tetracaine (100μM). However, caffeine (20mM) did not contract RVC. We next measured contraction and intracellular Ca(2+) (Ca(2+)(i)) simultaneously in RA and RVC exposed to caffeine. While caffeine increased Ca(2+)(i) and contracted RA, it had no significant effect on Ca(2+)(i) or contraction in RVC. These data suggest that ryanodine receptors, while present in both RA and RVC, are inactive and uncoupled from Ca(2+) release and contraction in RVC.
    Cell calcium 11/2012; 53(2). DOI:10.1016/j.ceca.2012.10.006 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.
    Cell Calcium 01/2005; 36(6):525-34. DOI:10.1016/j.ceca.2004.05.005 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depolarization-induced contraction of smooth muscle is thought to be mediated by Ca2+ influx through voltage-gated L-type Ca2+channels. We describe a novel contraction mechanism that is independent of Ca2+ entry. Pharmacological experiments were carried out on isolated rat gut longitudinal smooth muscle preparations, measuring isometric contraction strength upon high K+-induced depolarization. Treatment with verapamil, which presumably leads to a conformational change in the channel, completely abolished K+-induced contraction, while residual contraction still occurred when Ca2+ entry was blocked with Cd2+. These results were further confirmed by measuring intracellular Ca2+ transients using Fura-2. Co-application of Cd2+ and the ryanodine receptor blocker DHBP further reduced contraction, albeit incompletely. Additional blockage of either phospholipase C (U 73122) or inositol 1,4,5-trisphophate (IP3)receptors (2-APB) abolished most contractions, while sole application of these blockers and Cd2+ (without parallel ryanodine receptor manipulation) also resulted in incomplete contraction block. We conclude that there are parallel mechanisms of depolarization-induced smooth muscle contraction via (a) Ca2+ entry and (b) Ca2+ entry-independent, depolarization-induced Ca2+-release through ryanodine receptors and IP3, with the latter being dependent on phospholipase C activation.
    Acta Pharmacologica Sinica 09/2009; 30(8):1123-31. DOI:10.1038/aps.2009.98 · 2.50 Impact Factor

Preview

Download
3 Downloads
Available from