Effect of age and gender on heart rate recovery after submaximal exercise during cardiac rehabilitation in patients with angina pectoris, recent acute myocardial infarction, or coronary bypass surgery.

Cardiac Health Center, Weill-Cornell Medical Center, The New York-Presbyterian Hospital, New York, New York 10021, USA.
The American Journal of Cardiology (Impact Factor: 3.21). 10/2003; 92(5):600-3. DOI: 10.1016/S0002-9149(03)00733-1
Source: PubMed

ABSTRACT The effect of exercise training on the heart rate recovery (HRR) response to submaximal effort was examined in 81 patients during 12 weeks of phase II cardiac rehabilitation. Although HRR after submaximal effort was relatively reduced in older patients with heart disease and in women, its increase during exercise training in men and women of all ages was consistent with enhancement of parasympathetic tone during activities of daily living.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decreased heart rate variability and attenuated heart rate recovery following exercise are associated with an increased risk of mortality in cardiac patients. This study investigated the effects of 12 weeks of moderate-intensity endurance exercise (END) and a novel low-volume high-intensity interval exercise protocol (HIT) on measures of heart rate recovery and heart rate variability in patients with coronary artery disease (CAD). Fourteen males with CAD participated in 12 weeks of END or HIT training, each consisting of 2 supervised exercise sessions per week. END consisted of 30-50 min of continuous cycling at 60% peak power output (PPO). HIT involved ten 1-min intervals at 88% PPO separated by 1-min intervals at 10% PPO. Heart rate recovery at 1 min and 2 min was measured before and after training (pre- and post-training, respectively) using a submaximal exercise bout. Resting time and spectral and nonlinear domain measures of heart rate variability were calculated. Following 12 weeks of END and HIT, there was no change in heart rate recovery at 1 min (END, 40 ± 12 beats·min(-1) vs. 37 ± 19 beats·min(-1); HIT, 31 ± 8 beats·min(-1) vs. 35 ± 8 beats·min(-1); p ≥ 0.05 for pre- vs. post-training) or 2 min (END, 44 ± 18 beats·min(-1) vs. 43 ± 19 beats·min(-1); HIT, 42 ± 10 beats·min(-1) vs. 50 ± 6 beats·min(-1); p ≥ 0.05 for pre- vs. post-training). All heart rate variability indices were unchanged following END and HIT training. In conclusion, neither END nor HIT exercise programs elicited training-induced improvements in cardiac autonomic function in patients with CAD. The absence of improvements with training may be attributed to the optimal medical management and normative pretraining state of our sample.
    Applied Physiology Nutrition and Metabolism 06/2013; 38(6):644-650. · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Background: Abnormalities of autonomic function have been reported in patients with chronic obstructive pulmonary disease. The effect of the exercise training in heart rate recovery (HRR) has not been established in patients with COPD. Objective: To assess the effects of 8-weeks' endurance training program on parasympathetic nervous system response measured as heart rate recovery in a sample of moderate-to-severe COPD patients. Methods: We recruited a consecutive sample of patients with COPD candidates to participate in a pulmonary rehabilitation program from respiratory outpatient clinics of a tertiary hospital. HRR was calculated, before and after training, as the difference in heart rate between end-exercise and one minute thereafter (HRR1) in a constant-work rate protocol. Results: A total of 73 COPD patients were included: mean (SD) age 66 (8) years, median (P25-P75) post-bronchodilator FEV1 39 (29-53)%. The prevalence of slow HRR1 (≤12 beats) at baseline was 63%, and was associated with spirometric severity (mean FEV1 35% in slow HRR1 vs 53 in normal HRR1, p < 0.001). After 8-weeks training, HRR1 improved from mean (SD) 10 (7) to 12 (7) beats (p = 0.0127). Multivariate linear regression models showed that the only variable related to post-training HRR1 was pre-training HRR1 (p < 0.001). Conclusions: These results suggest that training enhances HRR in patients with moderate-to-severe COPD. HRR is an easy tool to evaluate ANS such that it may be a useful clinical marker of parasympathetic nervous system response in patients with COPD.
    COPD Journal of Chronic Obstructive Pulmonary Disease 01/2014; 11:190-196. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and is also linked to the increased risk of mortality in CVD patients. The quantification of heart rate decrement after exercise - known as heart rate recovery (HRR) - is a simple tool for assessing cardiac autonomic activity in healthy and CVD patients. Furthermore, since The Cleveland Clinic studies, HRR has also been used as a powerful index for predicting mortality. For these reasons, in recent years, the scientific community has been interested in proposing methods and protocols to investigate HRR and understand its underlying mechanisms. The aim of this review is to discuss current knowledge about HRR, including its potential primary and secondary physiological determinants, as well as its role in predicting mortality. Published data show that HRR can be modelled by an exponential curve, with a fast and a slow decay component. HRR may be influenced by population and exercise characteristics. The fast component mainly seems to be dictated by the cardiac parasympathetic reactivation, probably promoted by the deactivation of central command and mechanoreflex inputs immediately after exercise cessation. On the other hand, the slow phase of HRR may be determined by cardiac sympathetic withdrawal, possibly via the deactivation of metaboreflex and thermoregulatory mechanisms. All these pathways seem to be impaired in CVD, helping to explain the slower HRR in such patients and the increased rate of mortality in individuals who present a slower HRR.
    Clinical Physiology and Functional Imaging 11/2013; · 1.33 Impact Factor