Ishii, G. et al. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem. Biophys. Res. Commun. 309, 232-240

Hannover Medical School, Hanover, Lower Saxony, Germany
Biochemical and Biophysical Research Communications (Impact Factor: 2.3). 09/2003; 309(1):232-40. DOI: 10.1016/S0006-291X(03)01544-4
Source: PubMed


To confirm whether human cancer-induced stromal cells are derived from bone marrow, bone marrow (BM) cells obtained from beta-galactosidase transgenic and recombination activating gene 1 (RAG-1) deficient double-mutant mice (H-2b) were transplanted into sublethally irradiated severe combined immunodeficient (SCID) mice (H-2d). The human pancreatic cancer cell line Capan-1 was subcutaneously xenotransplanted into SCID recipients and stromal formation was analyzed on day 14 and on day 28. Immunohistochemical and immunofluorescence studies revealed that BM-derived endothelial cells (X-gal/CD31 or H-2b/CD31 double-positive cells) and myofibroblasts (X-gal/alpha-smooth muscle actin or H-2b/alpha-smooth muscle actin double-positive cells) were present within and around the cancer nests. On day 14, the frequencies of BM-derived endothelial cells and BM-derived myofibroblasts were 25.3+/-4.4% and 12.7+/-9.6%, respectively. On day 28, the frequency of BM-derived endothelial cells was 26.7+/-9.7%, which was similar to the value on day 14. However, the frequency of BM-derived myofibroblasts was significantly higher (39.8+/-17.1%) on day 28 than on day 14 (P<0.05). The topoisomerase IIalpha-positive ratio was 2.2+/-1.2% for the H-2b-positive myofibroblasts, as opposed to only 0.3+/-0.4% for the H-2b-negative myofibroblasts, significant proliferative activity was observed in the BM-derived myofibroblasts (P<0.05). Our results indicate that BM-derived myofibroblasts become a major component of cancer-induced stromal cells in the later stage of tumor development.

25 Reads
  • Source
    • "In the context of cancer, Quante et al. found that approximately 20% of the myofibroblasts in an inflammation-induced gastric cancer model were bone-marrow derived (29). In a pancreatic cancer model, BMCs contributed with up to 40% to the α-SMA-positive CAF population (28). However, in a breast cancer model studying systemic signaling, myofibroblasts in tumors growing at a distant site were derived from local sources but not from BMCs (25), indicating tissue type or cancer model-specific differences. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor- or cancer-associated fibroblasts (CAFs) are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular "polarization," previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.
    Frontiers in Oncology 03/2014; 4:62. DOI:10.3389/fonc.2014.00062
  • Source
    • "Although some data indicate that the stromal compartment, when microdissected from human breast tumors, exhibits genetic alterations, the proportion of such alterations in fibroblasts remains rare suggesting that EMT cannot be the main origin for myofibroblasts [57]. Recent data from human breast cancers and animal models established that myofibroblasts can derive from bone marrow derived cells, such as fibrocytes or mesenchymal stem cells [58] [59] [60] [61] [62] [63]. Moreover , various mesenchymal cell types, including endothelial cells, pericytes or pre-adipocytes can also be converted into myofibroblasts in breast carcinomas [56] [64] [65]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Compelling evidence show that Reactive Oxygen Species (ROS) levels are finely regulated in the cell and can act as "second messengers" in response to diverse stimuli. In tumor epithelial cells, ROS accumulate abnormally and induce signaling cascades that mediate the oncogenic phenotype. In addition to their impact on tumor epithelial cells, ROS also affect the surrounding cells that constitute the tumor microenvironment. Indeed, ROS production increases tumor angiogenesis, drives the onset of inflammation and promotes conversion of fibroblast into myofibroblasts. These cells, initially identified upon wound healing, exhibit similar properties to those observed in fibroblasts associated with aggressive adenocarcinomas. Indeed, analyses of tumors with distinct severity revealed the existence of multiple distinct co-existing subtypes of Carcinoma-Associated Fibroblasts (CAFs), with specific marker protein profiling. Chronic oxidative stress deeply modifies the proportion of these different fibroblast subtypes, further supporting tumor growth and metastatic dissemination. At last, ROS have been implicated in the metabolic reprogramming of both cancer cells and CAFs, allowing an adaptation to oxidative stress that ultimately promotes tumorigenesis and chemoresistance. In this review, we discuss the role of ROS in cancer cells and CAFs and their impact on tumor initiation, progression and metastasis.
    Seminars in Cancer Biology 01/2014; 25. DOI:10.1016/j.semcancer.2013.12.007 · 9.33 Impact Factor
  • Source
    • "Besides, that myofibroblasts dedifferentiated from smooth muscle cells are reportedly involved in the stricture formation of the bronchioles in asthma and that of the intestine in Crohn’s disease is in agreement with our hypothesis, the critical role of myofibroblasts dedifferentiated from the muscle layer on the stricture formation [31-34]. With regard to the sources of myofibroblasts or myofibroblastic cells, bone marrow-derived circulating fibrocytes should also be considered as well as local resident cells such as fibroblasts and muscle cells [36,37]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Stricture formation is one of the major complications after endoscopic removal of large superficial squamous cell neoplasms of the esophagus, and local steroid injections have been adopted to prevent it. However, fundamental pathological alterations related to them have not been well analyzed so far. The aim of this study was to analyze the time course of the healing process of esophageal large mucosal defects resulting in stricture formation and its modification by local steroid injection, using an animal model. Methods Esophageal circumferential mucosal defects were created by endoscopic mucosal dissection (ESD) for four pigs. One pig was sacrificed five minutes after the ESD, and other two pigs were followed-up on endoscopy and sacrificed at the time of one week and three weeks after the ESD, respectively. The remaining one pig was followed-up on endoscopy with five times of local steroid injection and sacrificed at the time of eight weeks after the ESD. The esophageal tissues of all pigs were subjected to pathological analyses. Results For the pigs without steroid injection, the esophageal stricture was completed around three weeks after the ESD on both endoscopy and esophagography. Histopathological examination of the esophageal tissues revealed that spindle-shaped α-smooth muscle actin (SMA)-positive myofibroblasts arranged in a parallel fashion and extending horizontally were identified at the ulcer bed one week after the ESD, and increased contributing to formation of the stenotic luminal ridge covered with the regenerated epithelium three weeks after the ESD. The proper muscle layer of the stricture site was thinned with some myocytes which seemingly showed transition to the myofibroblast layer. By contrast, for the pig with steroid injection, esophageal stricture formation was not evident with limited appearance of the spindle-shaped myofibroblasts, instead, appearance of stellate or polygocal SMA-positive stromal cells arranged haphazardly in the persistent granulation tissue of the ulcer site. Conclusions Proliferation of spindle-shaped myofibroblasts arranged in a parallel fashion is likely to play an important role in stricture formation after circumferential mucosal defects by esophageal ESD, which may be related to the thinning of the proper muscle layer in the healing course of the defects. Local steroid injection seems to be effective to prevent the stricture through the modification of this process.
    BMC Gastroenterology 04/2013; 13(1):72. DOI:10.1186/1471-230X-13-72 · 2.37 Impact Factor
Show more