Article

Antinociceptive profiles of crude extract from roots of Angelica gigas NAKAI in various pain models.

Department of Pharmacology, College of Medicine, Hallym University, Chunchon, Kangwon Do, South Korea.
Biological & Pharmaceutical Bulletin (Impact Factor: 1.85). 10/2003; 26(9):1283-8. DOI: 10.1248/bpb.26.1283
Source: PubMed

ABSTRACT To characterize the antinociceptive profiles of Angelica gigas NAKAI (ANG; Korean angelica), methanol extract from the dried roots of ANG was made and mice were administered orally at the various doses (from 0.25 to 3 g/kg). ANG produced the increased latencies of the tail-flick and hot-plate paw-licking responses in a dose-dependent manner. In acetic acid-induced writhing test, ANG dose-dependently decreased writhing numbers. Moreover, the cumulative response time of nociceptive behaviors induced by intraplantar formalin injection was reduced during both the 1st and the 2nd phases in a dose-dependent manner in ANG-treated mice. Furthermore, oral administration of ANG did not cause licking, scratching and biting responses induced by TNF-alpha (100 pg), IFN-gamma (100 pg) or IL-1beta (100 pg) injected intrathecally (i.t.), especially at higher dose (3 g/kg). Additionally, in ANG treated mice, the cumulative nociceptive response time for i.t. administration of substance P or capsaicin was dose-dependently diminished. Finally, nociceptive responses elicited by i.t. injection of glutamate (20 microg), N-methyl-D-aspartic acid (60 ng), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (13 ng) or kainic acid (12 ng) were decreased by oral administration of ANG. Our results suggest that ANG produces antinociception via acting on the central nervous system and shows antinociceptive profiles in various pain models, especially inflammatory pain.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes induces pathologic proliferation and angiogenesis in the retina that leads to catastrophic loss of vision. Decursin is a novel therapeutic that targets the vascular endothelial growth factor (VEGF) receptor (VEGFR) with putative anti-proliferative and anti-angiogenic activities. Thereby we utilized human retinal microvascular endothelial cells (HRMEC) and human umbilical vein endothelial cells (HUVEC) under conditions of excess glucose to explore dose-dependent responses of decursin on markers of migration, angiogenesis, and proliferation. Decursin dose-dependently inhibited tube formation, VEGFR-2 expression, along with relative metabolic activity and 5-bromo-2'-deoxy-uridine (BrdU) activity in both cell lines. We then correlated our findings to the streptozotocin-induced rat model of diabetes. Following three months of decursin treatment VEGFR-2 expression was significantly inhibited. Our data would suggest that decursin may be a potent anti-angiogenic and anti-proliferative agent targeting the VEGFR-2 signaling pathway, which significantly inhibits diabetic retinal neovascularization.
    Molecular and Cellular Endocrinology 05/2013; · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angelica gigas is a medicinal plant that produces pyranocoumarins, including decursin (D) and decursinol angelate (DA), which have neuroprotective, anticancer, and antiandrogenic effects. In this study, the coumarin biosynthetic pathway was engineered to increase the production of DA. Specifically, a vector was constructed which contained the A. gigas phenylalanine ammonia-lyase (AgPAL) and cinnamate 4-hydroxylase (AgC4H) genes that were driven by the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic hairy roots that overexpressed AgPAL or AgC4H genes were obtained by using an Agrobacterium rhizogenes-mediated transformation system. Among them, only AgC4H-transgenic hairy root lines produced more DA than control transgenic hairy root lines. The enhanced gene expression corresponded to elevated C4H activities. This study showed the importance of C4H in the production of DA in A. gigas hairy root culture.
    Molecular Biotechnology 05/2011; 50(2):114-20. · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study evaluated the antinociceptive effect of the pro-inflammatory cytokines inhibitor diacerein in mice and its possible mechanism of action. The antinociception produced by diacerein was tested at different sites of action, moreover selective antagonists or agonists were used to identify the mechanism that may be involved in its antinociceptive action against acetic acid-induced visceral pain. Diacerein administered systemically (intraperitoneal [i.p.] or intra-gastric [i.g.] routes), supra-spinally (i.c.v.), spinally (i.t.) or peripherally (in association with the irritant agent) inhibited the visceral nociception induced by acetic acid in mice. Interestingly, diacerein treatment (25 mg/kg, i.p. or 50 mg/kg, i.g.) produced long-lasting (for up to 4 h) inhibition of acetic acid-induced nociception. Intraperitoneal treatment of mice with diacerein (25.0 mg/kg) inhibited somatic nociception induced by i.t. injection of glutamate, NMDA, kainate, and trans-ACPD but not that caused by AMPA. Diacerein (5.0-25.0 mg/kg) also produced dose related inhibition of interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) induced nociception. These results indicate that diacerein produces antinociception by inhibiting glutamatergic transmission through both ionotropic and metabotropic receptors as well as activity of pro-inflammatory cytokines.
    Pharmacology Biochemistry and Behavior 06/2012; 102(4):549-54. · 2.61 Impact Factor