Article

Phenotypic and functional characterization of long-term cultured rhesus macaque spleen-derived NKT cells.

Department of Surgery, Division of Transplantation Immunobiology, University of Alabama, Birmingham, AL 35294, USA.
The Journal of Immunology (Impact Factor: 5.52). 10/2003; 171(6):2904-11.
Source: PubMed

ABSTRACT Natural killer T cells are immunoregulatory cells, which have important roles in tolerance and autoimmunity, as demonstrated primarily in mice and humans. In this study, we define the phenotype and function of Valpha24(+) T cells derived from the spleens of rhesus macaques, a species increasingly used in models of immune tolerance. Valpha24(+) cells were isolated and expanded with monocyte-derived immature dendritic cells in the presence of alpha-galactosylceramide, IL-2, and IL-15. Rhesus NKT cells were stained with mAbs against both Valpha24 and the invariant complementarity-determining region 3 epitope of the human Valpha24/JalphaQ TCR. The cells were CD4, CD8 double negative and expressed CD56. Rhesus NKT cells also exhibited moderate to high expression of CD95, CD45RO, CD11a, and beta(7) integrin, but did not express CD45 RA, CD62L, CCR7, CD28, and other activation, costimulatory molecules (CD69 and CD40L). By intracellular staining, >90% of unstimulated rhesus NKT cells expressed IL-10, but not IFN-gamma. However, the latter was strongly expressed after stimulation. Rhesus NKT secreted large amounts of TGF-beta, IL-13, and IL-6, and modest levels of IFN-gamma, whereas IL-10 secretion was negligible and no detectable IL-4 was observed either intracellularly or in culture supernatants. Functionally, the NKT cells and their supernatants suppressed T cell proliferation in allogeneic MLR. We conclude that long-term cultured rhesus macaque spleen-derived Valpha24(+) T cells are semi-invariant double-negative cells with effector memory phenotype. These cells are semianergic, polarized to a uniquely Th3 > T regulatory-1 regulatory cell phenotype, and have regulatory/suppressive function in vitro.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: NKT cells are key mediators of antiviral and anticancer immunity. Experiments in mice have demonstrated that activation of NKT cells in vivo induces the expression of multiple effector molecules critical to successful immunity. Human clinical trials have shown similar responses, although in vivo activation of NKT cells in humans or primate models are far more limited in number and scope. Measuring ex vivo activation of NKT cells by the CD1d-restricted glycolipid ligand α-Galactosylceramide (α-GalCer) through cytokine expression profiles is a useful marker of NKT cell function, but for reasons that are unclear, this approach does not appear to work as well in humans and non-human primate macaque models in comparison to mice. We performed a series of experiments on human and macaque (Macaca nemestrina) fresh whole blood samples to define optimal conditions to detect NKT cell cytokine (TNF, IFNγ, IL-2) and degranulation marker (CD107a) expression by flow cytometry. We found that conditions previously described for mouse splenocyte NKT cell activation were suboptimal on human or macaque blood NKT cells. In contrast, a 6h incubation with brefeldin A added for the last 4h, in a 96-well plate based assay, and using an α-GalCer concentration of 1 μg/ml were optimal methods to stimulate NKT cells in fresh blood from both humans and macaques. Unexpectedly, we noted that blood NKT cells from macaques infected with SIV were more readily activated by α-GalCer than NKT cells from uninfected macaques, suggesting that SIV infection may have primed the NKT cells. In conclusion, we describe optimized methods for the ex vivo antigen-specific activation of human and macaque blood NKT cells. These assays should be useful in monitoring NKT cells in disease and in immunotherapy studies.
    Journal of immunological methods 06/2012; 382(1-2):150-9. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic immune activation is a key determinant of AIDS progression in HIV-infected humans and simian immunodeficiency virus (SIV)-infected macaques but is singularly absent in SIV-infected natural hosts. To investigate whether natural killer T (NKT) lymphocytes contribute to the differential modulation of immune activation in AIDS-susceptible and AIDS-resistant hosts, we compared NKT function in macaques and sooty mangabeys in the absence and presence of SIV infection. Cynomolgus macaques had significantly higher frequencies of circulating invariant NKT lymphocytes compared to both rhesus macaques and AIDS-resistant sooty mangabeys. Despite this difference, mangabey NKT lymphocytes were functionally distinct from both macaque species in their ability to secrete significantly more IFN-γ, IL-13, and IL-17 in response to CD1d/α-galactosylceramide stimulation. While NKT number and function remained intact in SIV-infected mangabeys, there was a profound reduction in NKT activation-induced, but not mitogen-induced, secretion of IFN-γ, IL-2, IL-10, and TGF-β in SIV-infected macaques. SIV-infected macaques also showed a selective decline in CD4(+) NKT lymphocytes which correlated significantly with an increase in circulating activated memory CD4(+) T lymphocytes. Macaques with lower pre-infection NKT frequencies showed a significantly greater CD4(+) T lymphocyte decline post SIV infection. The disparate effect of SIV infection on NKT function in mangabeys and macaques could be a manifestation of their differential susceptibility to AIDS. Alternately, these data also raise the possibility that loss of anti-inflammatory NKT function promotes chronic immune activation in pathogenic SIV infection, while intact NKT function helps to protect natural hosts from developing immunodeficiency and aberrant immune activation.
    PLoS Pathogens 09/2012; 8(9):e1002928. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, invariant natural killer T (iNKT) cells represent a small but significant population of peripheral blood mononuclear cells (PBMCs) with a high degree of variability. In this study, pursuant to our goal of identifying an appropriate non-human primate model suitable for pre-clinical glycolipid testing, we evaluated the percentage and function of iNKT cells in the peripheral blood of pig-tailed macaques. First, using a human CD1d-tetramer loaded with α-GalCer (α-GalCer-CD1d-Tet), we found that α-GalCer-CD1d-Tet(+) CD3(+)iNKT cells make up 0.13% to 0.4% of pig-tailed macaque PBMCs, which are comparable to the percentage of iNKT cells found in human PBMCs. Second, we observed that a large proportion of Vα24(+)CD3(+) cells are α-GalCer-CD1d-Tet(+)CD3(+)iNKT cells, which primarily consist of either the CD4(+) or CD8(+) subpopulation. Third, we found that pig-tailed macaque iNKT cells produce IFN-γ in response to α-GalCer, as shown by ELISpot assay and intracellular cytokine staining (ICCS), as well as TNF-α, as shown by ICCS, indicating that these iNKT cells are fully functional. Interestingly, the majority of pig-tailed macaque iNKT cells that secrete IFN-γ are CD8(+)iNKT cells. Based on these findings, we conclude that the pig-tailed macaques exhibit potential as a non-human animal model for the pre-clinical testing of iNKT-stimulating glycolipids.
    PLoS ONE 01/2012; 7(10):e48166. · 3.53 Impact Factor

Full-text (2 Sources)

View
25 Downloads
Available from
May 30, 2014